The characteristics of photosynthesis and water metabolism of Caragana microphylla Lam.,C. davazamcii Sancz. and C. korshinskii Kom. populations in different sites (117.6o-105.7o E, 44.6o-38.8o N)were studied. (1) Fro...The characteristics of photosynthesis and water metabolism of Caragana microphylla Lam.,C. davazamcii Sancz. and C. korshinskii Kom. populations in different sites (117.6o-105.7o E, 44.6o-38.8o N)were studied. (1) From the east to the west, the responses of the three species to photosyntheticallyavailable radiation (PAR) in net photosynthesis rate increased, the relative humidity of the air whichcorresponded to the occurrence of maximum photosynthesis rate decreased, and the corresponding airtemperature increased. Along the same gradient, the before-noon superiority of the photosynthesis be-came evident, and the photosynthesis rate and the light use efficiency (LUE ) increased, while the transp-iration rate decreased, thus the water use efficiency (WUE ) increased notably, and the leaf water contentdecreased gradually. From the east to the west, the plants took a water-saving strategy step by step withhigher photosynthesis rate and lower transpiration rate. These physiological changes in the plants wereadaptable to the conditions of light, temperature and humidity in the habitat of the plants, and might be thebiological foundation for the geographical transition among C. microphylla , C. davazamcii and C. korshinskii.(2) The adaptation of photosynthetic system of C. microphylla , C. davazamcii and C. korshinskii to PAR, airhumidity and temperature exhibited the interspecific continuity, which was consistent with theenvironmental gradient. In different species and different sites, the diurnal changes of net photosynthesisrate, the daily cumulative value of net photosynthesis, the diurnal changes of transpiration rate, the dailycumulative value of transpiration, the water use efficiency and the diurnal changes of leaf water contentvaried with longitudinal descent (from the east to the west). The characteristics of photosynthesis andwater metabolism indicated that the geographical transition among C. microphylla , C. davazamcii and C.korshinskii was in gradual change, and these three species formed a geographical cl展开更多
Coating seeds with water absorbent materials can improve their survival, especially for those planted in drought or barren areas. In this study, effects of five kinds of super absorbent polymers(SAPs) on seed germinat...Coating seeds with water absorbent materials can improve their survival, especially for those planted in drought or barren areas. In this study, effects of five kinds of super absorbent polymers(SAPs) on seed germination and seedling growth of Caragana korshinskii under drought conditions were investigated. Our results showed that SAP coatings could significantly improve the percentage and energy of seed germination, as well as reduce the relative electrical conductivity(REC), proline, malondialdehyde(MDA), H_2O_2 content, and peroxidase(POD) activity during germination. These results implied that seeds could uptake moisture from SAP coatings to alleviate drought-induced oxidative stress and membrane damage, thus exhibiting a better vigor and germination performance. After coating C. korshinskii seeds with SAPs, more seedlings emerged and grew better. Under the combined influence of the water absorption capacity of SAP and other factors, the efficiencies of five SAP coatings are in the sequence D>E>B>A>C. The function of the SAP coating on promoting seedling survival was confirmed in Mu Us Sandy Land in Ordos, Inner Mongolia Autonomous Region, China. The average seedling number of SAP D-coated seeds increased twofold on that of naked seeds. Our results are expected to be helpful in understanding and utilizing SAP seed coatings in improving plant survival under drought conditions.展开更多
The former plant population survey has shown that three genetically-related species, Caraganamicrophylla Lam., C. davazamcii Sancz. and C. korshinskii Kom., form a geographical replacement series inNei Mongol Plateau....The former plant population survey has shown that three genetically-related species, Caraganamicrophylla Lam., C. davazamcii Sancz. and C. korshinskii Kom., form a geographical replacement series inNei Mongol Plateau. The present study on population distribution, taxonomy, morphology, development andgenetic structure demonstrated that the geographical distribution of these three species was successiveand in gradual change, thus forming a geographical cline which extended from the east to the west of NeiMongol Plateau. With an analysis of climate change over time, it was considered that the formation of thisgeographical cline was a result of plant adaptation to its natural environment.展开更多
On the edge of the Tengger Desert in northern China,revegetation has changed the landscape from moving dunes to stabilized dunes covered by shrubs,which further modifies the pattern of rainfall redistribution.To study...On the edge of the Tengger Desert in northern China,revegetation has changed the landscape from moving dunes to stabilized dunes covered by shrubs,which further modifies the pattern of rainfall redistribution.To study rainfall interception loss by shrubs and its relationship to rainfall properties and crown structure,throughfalls passing through crowns of Artemisia ordosica Krash.and Caragana korshinskii Kom.were measured using nine PVC cups under the canopy of each of the two shrubs during 73 rain events over a three-year period,with total rainfall of 260.9 mm.Interception losses of gross rainfall by A.ordosica and C.korshinskii account for 15% and 27% of the total on a crown area basis,and 6% and 11% on a ground area basis,respectively.Individual throughfall(T) and interception(I) were significantly related to rainfall amount(Pg),duration(D),and intensity(R).Ratios of throughfall to rainfall(T/Pg) and interception to rainfall(I/Pg) were not only significantly related to Pg,D,and R,but also to shrub species,and interactions of species with crown volume(CV) and leaf area index(LAI).Under most rain events,interceptions by C.korshinskii with greater CV and LAI were significantly higher than those by A.ordosica,and more rainfall interception occurred at locations closer to the stems of the two shrubs.For C.korshinskii,I/Pg had a significant positive linear relation with CV and LAI,while T/Pg had a significant negative linear relation with them.CV has a greater influence on T/Pg and I/Pg than does LAI.Using a regression method,canopy water storage capacities are estimated to be 0.52 and 0.68 mm,and free throughfall coefficient to be 0.62 and 0.47 for A.ordosica and C.korshinskii,respectively.展开更多
Salix psammophila and Caragana korshinskii are two typical shrubs in the southern Mu Us Sandy Land of China which are threatened by increasing water deficits related to climate change and large-scale human activities ...Salix psammophila and Caragana korshinskii are two typical shrubs in the southern Mu Us Sandy Land of China which are threatened by increasing water deficits related to climate change and large-scale human activities (e.g. coal mining and oil exploitation). In this study, we assessed their vulnerability to xylem embolism and the related anatomical traits in two-year-old regenerated shoots of these two shrubs to understand how they cope with drought environment. We also evaluated the in situ hydraulic safety margins to hydraulic failure from measurements of annual predawn and midday leaf water potentials. The results showed that S. psammophila stems had a higher water transport capacity than C. korshinskii stems. The stem xylem water potentials at 12%, 50% and 88% loss of conductivity were –1.11, –1.63 and –2.15 MPa in S. psammophila, respectively, and –1.37, –2.64 and –3.91 MPa in C. korshinskii, respectively. This suggested that C. korshinskii was more resistant to cavitation than S. psammophila. Compared with S. psammophila, C. korshinskii had shorter maximum vessel length, lower vessel density, smaller conductive area and higher wood density, which may contribute to its more resistant xylem. The in situ hydraulic safety margins indicated that even during the driest periods, both shrubs lived well above the most critical embolism thresholds, and the hydraulic safety margin was wider in C. korshinskii than in S. psammophila, suggesting that the regenerated shoots of both shrubs could function normally and C. korshinskii had greater hydraulic protection. These results provide the basis for an in-depth understanding of the survival, growth and functional behavior of these two shrubs under harsh and dry desert environments.展开更多
One of the goals of grazing management in the desert steppe is to improve its ecosystem.However,relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management.In this...One of the goals of grazing management in the desert steppe is to improve its ecosystem.However,relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management.In this study,we investigated the diversity and aboveground biomass of Caragana korshinskii Kom.shrub communities in long-term fencing and grazing areas,combined with an analysis of soil physical-chemical properties and genomics,with the aim of understanding how fence management affects plant-soil-microbial inter-relationships in the desert steppe,China.The results showed that fence management(exclosure)increased plant diversity and aboveground biomass in C.korshinskii shrub area and effectively enhanced soil organic carbon(233.94%),available nitrogen(87.77%),and available phosphorus(53.67%)contents.As well,the Shannon indices of soil bacteria and fungi were greater in the fenced plot.Plant-soil changes profoundly affected the alpha-and beta-diversity of soil bacteria.Fence management also altered the soil microbial community structure,significantly increasing the relative abundances of Acidobacteriota(5.31%-8.99%),Chloroflexi(3.99%-5.58%),and Glomeromycota(1.37%-3.28%).The soil bacterial-fungal co-occurrence networks under fence management had higher complexity and connectivity.Based on functional predictions,fence management significantly increased the relative abundance of bacteria with nitrification and nitrate reduction functions and decreased the relative abundance of bacteria with nitrate and nitrite respiration functions.The relative abundances of ecologically functional fungi with arbuscular mycorrhizal fungi,ectomycorrhizal fungi,and saprotrophs also significantly increased under fence management.In addition,the differential functional groups of bacteria and fungi were closely related to plant-soil changes.The results of this study have significant positive implications for the ecological restoration and reconstruction of dry desert steppe and similar areas.展开更多
Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants durin...Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants during the later periods of vegetation restoration remains unclear.Therefore,this study was conducted to bridge the knowledge gap by investigating the regeneration dynamics of artificial forest under natural conditions.The information of seed rain and soil seed bank was collected and quantified from an artificial Caragana korshinskii Kom.forest in the Tengger Desert,China.The germination tests were conducted in a laboratory setting.The analysis of species quantity and diversity in seed rain and soil seed bank was conducted to assess the impact of different durations of sand fixation(60,40,and 20 a)on the progress of vegetation restoration and ecological conditions in artificial C.korshinskii forest.The results showed that the top three dominant plant species in seed rain were Echinops gmelinii Turcz.,Eragrostis minor Host.,and Agropyron mongolicum Keng.,and the top three dominant plant species in soil seed bank were E.minor,Chloris virgata Sw.,and E.gmelinii.As restoration period increased,the density of seed rain and soil seed bank increased first and then decreased.While for species richness,as restoration period increased,it gradually increased in seed rain but decreased in soil seed bank.There was a positive correlation between seed rain density and soil seed bank density among all the three restoration periods.The species similarity between seed rain or soil seed bank and aboveground vegetation decreased with the extension of restoration period.The shape of the seeds,specifically those with external appendages such as spines and crown hair,clearly had an effect on their dispersal,then resulting in lower seed density in soil seed bank.In addition,precipitation was a crucial factor in promoting rapid germination,also resulting in lower seed density in soil seed bank.Our findings provide valuable insigh展开更多
文摘The characteristics of photosynthesis and water metabolism of Caragana microphylla Lam.,C. davazamcii Sancz. and C. korshinskii Kom. populations in different sites (117.6o-105.7o E, 44.6o-38.8o N)were studied. (1) From the east to the west, the responses of the three species to photosyntheticallyavailable radiation (PAR) in net photosynthesis rate increased, the relative humidity of the air whichcorresponded to the occurrence of maximum photosynthesis rate decreased, and the corresponding airtemperature increased. Along the same gradient, the before-noon superiority of the photosynthesis be-came evident, and the photosynthesis rate and the light use efficiency (LUE ) increased, while the transp-iration rate decreased, thus the water use efficiency (WUE ) increased notably, and the leaf water contentdecreased gradually. From the east to the west, the plants took a water-saving strategy step by step withhigher photosynthesis rate and lower transpiration rate. These physiological changes in the plants wereadaptable to the conditions of light, temperature and humidity in the habitat of the plants, and might be thebiological foundation for the geographical transition among C. microphylla , C. davazamcii and C. korshinskii.(2) The adaptation of photosynthetic system of C. microphylla , C. davazamcii and C. korshinskii to PAR, airhumidity and temperature exhibited the interspecific continuity, which was consistent with theenvironmental gradient. In different species and different sites, the diurnal changes of net photosynthesisrate, the daily cumulative value of net photosynthesis, the diurnal changes of transpiration rate, the dailycumulative value of transpiration, the water use efficiency and the diurnal changes of leaf water contentvaried with longitudinal descent (from the east to the west). The characteristics of photosynthesis andwater metabolism indicated that the geographical transition among C. microphylla , C. davazamcii and C.korshinskii was in gradual change, and these three species formed a geographical cl
基金supported by the Fundamental Research Funds for the Central Universities(No.BLX2013023)the National Natural Science Foundation of China(Nos.31271807 and 31501144)the Beijing Natural Science Foundation of China(No.6162020)
文摘Coating seeds with water absorbent materials can improve their survival, especially for those planted in drought or barren areas. In this study, effects of five kinds of super absorbent polymers(SAPs) on seed germination and seedling growth of Caragana korshinskii under drought conditions were investigated. Our results showed that SAP coatings could significantly improve the percentage and energy of seed germination, as well as reduce the relative electrical conductivity(REC), proline, malondialdehyde(MDA), H_2O_2 content, and peroxidase(POD) activity during germination. These results implied that seeds could uptake moisture from SAP coatings to alleviate drought-induced oxidative stress and membrane damage, thus exhibiting a better vigor and germination performance. After coating C. korshinskii seeds with SAPs, more seedlings emerged and grew better. Under the combined influence of the water absorption capacity of SAP and other factors, the efficiencies of five SAP coatings are in the sequence D>E>B>A>C. The function of the SAP coating on promoting seedling survival was confirmed in Mu Us Sandy Land in Ordos, Inner Mongolia Autonomous Region, China. The average seedling number of SAP D-coated seeds increased twofold on that of naked seeds. Our results are expected to be helpful in understanding and utilizing SAP seed coatings in improving plant survival under drought conditions.
文摘The former plant population survey has shown that three genetically-related species, Caraganamicrophylla Lam., C. davazamcii Sancz. and C. korshinskii Kom., form a geographical replacement series inNei Mongol Plateau. The present study on population distribution, taxonomy, morphology, development andgenetic structure demonstrated that the geographical distribution of these three species was successiveand in gradual change, thus forming a geographical cline which extended from the east to the west of NeiMongol Plateau. With an analysis of climate change over time, it was considered that the formation of thisgeographical cline was a result of plant adaptation to its natural environment.
基金supported by the National Natural Scientific Foundation of China (40825001 and 30870401)
文摘On the edge of the Tengger Desert in northern China,revegetation has changed the landscape from moving dunes to stabilized dunes covered by shrubs,which further modifies the pattern of rainfall redistribution.To study rainfall interception loss by shrubs and its relationship to rainfall properties and crown structure,throughfalls passing through crowns of Artemisia ordosica Krash.and Caragana korshinskii Kom.were measured using nine PVC cups under the canopy of each of the two shrubs during 73 rain events over a three-year period,with total rainfall of 260.9 mm.Interception losses of gross rainfall by A.ordosica and C.korshinskii account for 15% and 27% of the total on a crown area basis,and 6% and 11% on a ground area basis,respectively.Individual throughfall(T) and interception(I) were significantly related to rainfall amount(Pg),duration(D),and intensity(R).Ratios of throughfall to rainfall(T/Pg) and interception to rainfall(I/Pg) were not only significantly related to Pg,D,and R,but also to shrub species,and interactions of species with crown volume(CV) and leaf area index(LAI).Under most rain events,interceptions by C.korshinskii with greater CV and LAI were significantly higher than those by A.ordosica,and more rainfall interception occurred at locations closer to the stems of the two shrubs.For C.korshinskii,I/Pg had a significant positive linear relation with CV and LAI,while T/Pg had a significant negative linear relation with them.CV has a greater influence on T/Pg and I/Pg than does LAI.Using a regression method,canopy water storage capacities are estimated to be 0.52 and 0.68 mm,and free throughfall coefficient to be 0.62 and 0.47 for A.ordosica and C.korshinskii,respectively.
基金supported by the National Natural Science Foundation of China(41371507)
文摘Salix psammophila and Caragana korshinskii are two typical shrubs in the southern Mu Us Sandy Land of China which are threatened by increasing water deficits related to climate change and large-scale human activities (e.g. coal mining and oil exploitation). In this study, we assessed their vulnerability to xylem embolism and the related anatomical traits in two-year-old regenerated shoots of these two shrubs to understand how they cope with drought environment. We also evaluated the in situ hydraulic safety margins to hydraulic failure from measurements of annual predawn and midday leaf water potentials. The results showed that S. psammophila stems had a higher water transport capacity than C. korshinskii stems. The stem xylem water potentials at 12%, 50% and 88% loss of conductivity were –1.11, –1.63 and –2.15 MPa in S. psammophila, respectively, and –1.37, –2.64 and –3.91 MPa in C. korshinskii, respectively. This suggested that C. korshinskii was more resistant to cavitation than S. psammophila. Compared with S. psammophila, C. korshinskii had shorter maximum vessel length, lower vessel density, smaller conductive area and higher wood density, which may contribute to its more resistant xylem. The in situ hydraulic safety margins indicated that even during the driest periods, both shrubs lived well above the most critical embolism thresholds, and the hydraulic safety margin was wider in C. korshinskii than in S. psammophila, suggesting that the regenerated shoots of both shrubs could function normally and C. korshinskii had greater hydraulic protection. These results provide the basis for an in-depth understanding of the survival, growth and functional behavior of these two shrubs under harsh and dry desert environments.
基金funded by the National Natural Science Foundation of China(32061123006,32360426).
文摘One of the goals of grazing management in the desert steppe is to improve its ecosystem.However,relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management.In this study,we investigated the diversity and aboveground biomass of Caragana korshinskii Kom.shrub communities in long-term fencing and grazing areas,combined with an analysis of soil physical-chemical properties and genomics,with the aim of understanding how fence management affects plant-soil-microbial inter-relationships in the desert steppe,China.The results showed that fence management(exclosure)increased plant diversity and aboveground biomass in C.korshinskii shrub area and effectively enhanced soil organic carbon(233.94%),available nitrogen(87.77%),and available phosphorus(53.67%)contents.As well,the Shannon indices of soil bacteria and fungi were greater in the fenced plot.Plant-soil changes profoundly affected the alpha-and beta-diversity of soil bacteria.Fence management also altered the soil microbial community structure,significantly increasing the relative abundances of Acidobacteriota(5.31%-8.99%),Chloroflexi(3.99%-5.58%),and Glomeromycota(1.37%-3.28%).The soil bacterial-fungal co-occurrence networks under fence management had higher complexity and connectivity.Based on functional predictions,fence management significantly increased the relative abundance of bacteria with nitrification and nitrate reduction functions and decreased the relative abundance of bacteria with nitrate and nitrite respiration functions.The relative abundances of ecologically functional fungi with arbuscular mycorrhizal fungi,ectomycorrhizal fungi,and saprotrophs also significantly increased under fence management.In addition,the differential functional groups of bacteria and fungi were closely related to plant-soil changes.The results of this study have significant positive implications for the ecological restoration and reconstruction of dry desert steppe and similar areas.
基金funded by the General Project of Key R&D Plan of Ningxia Hui Autonomous Region,China(2021BEG03008,2022BEG02012)the Science and Technology Innovation Leading Talent Project of Ningxia Hui Autonomous Region(2021GKLRLX13)the National Natural Science Foundation of China(31760707).
文摘Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants during the later periods of vegetation restoration remains unclear.Therefore,this study was conducted to bridge the knowledge gap by investigating the regeneration dynamics of artificial forest under natural conditions.The information of seed rain and soil seed bank was collected and quantified from an artificial Caragana korshinskii Kom.forest in the Tengger Desert,China.The germination tests were conducted in a laboratory setting.The analysis of species quantity and diversity in seed rain and soil seed bank was conducted to assess the impact of different durations of sand fixation(60,40,and 20 a)on the progress of vegetation restoration and ecological conditions in artificial C.korshinskii forest.The results showed that the top three dominant plant species in seed rain were Echinops gmelinii Turcz.,Eragrostis minor Host.,and Agropyron mongolicum Keng.,and the top three dominant plant species in soil seed bank were E.minor,Chloris virgata Sw.,and E.gmelinii.As restoration period increased,the density of seed rain and soil seed bank increased first and then decreased.While for species richness,as restoration period increased,it gradually increased in seed rain but decreased in soil seed bank.There was a positive correlation between seed rain density and soil seed bank density among all the three restoration periods.The species similarity between seed rain or soil seed bank and aboveground vegetation decreased with the extension of restoration period.The shape of the seeds,specifically those with external appendages such as spines and crown hair,clearly had an effect on their dispersal,then resulting in lower seed density in soil seed bank.In addition,precipitation was a crucial factor in promoting rapid germination,also resulting in lower seed density in soil seed bank.Our findings provide valuable insigh