针对农业新闻目前面临的针对性差、分类不清和数据集缺乏等问题,提出一种基于ERNIE(Enhanced Representation through kNowledge IntEgration)、深度金字塔卷积神经网络(DPCNN)和双向门控循环单元(BiGRU)的农业新闻分类模型——EGC。首...针对农业新闻目前面临的针对性差、分类不清和数据集缺乏等问题,提出一种基于ERNIE(Enhanced Representation through kNowledge IntEgration)、深度金字塔卷积神经网络(DPCNN)和双向门控循环单元(BiGRU)的农业新闻分类模型——EGC。首先利用ERNIE对数据集进行编码,然后利用改进后的DPCNN和BiGRU同时提取新闻文本的特征,再将两者提取的特征进行拼合并经过Softmax得到最终结果。为了使EGC模型适用于农业新闻分类领域,对DPCNN进行改进,减少它的卷积层以保留更多特征。实验结果表明,与ERNIE相比,EGC模型的精确率、召回率和F1分数别提升了1.47、1.29和1.42个百分点,优于传统分类模型。展开更多
当前的目标分割模型难以兼顾分割性能与推断效率,为此提出一种基于尺度注意知识迁移的自蒸馏目标分割方法。首先,构建了一个仅利用主干特征的目标分割网络作为推断网络,实现高效的前向推断过程。其次,提出了一种基于尺度注意知识的自蒸...当前的目标分割模型难以兼顾分割性能与推断效率,为此提出一种基于尺度注意知识迁移的自蒸馏目标分割方法。首先,构建了一个仅利用主干特征的目标分割网络作为推断网络,实现高效的前向推断过程。其次,提出了一种基于尺度注意知识的自蒸馏学习模型:一方面,设计了具有尺度注意机制的金字塔特征模块,利用尺度注意机制自适应地捕获不同语义水平的上下文信息,提取更具区分性的自蒸馏知识;另一方面,融合交叉熵、KL(Kullback-Leibler)散度和L2距离构造蒸馏损失,高效驱动蒸馏知识向分割网络迁移,提升泛化性能。该方法在COD(Camouflaged Object Detection)、DUT-O(Dalian University of Technology-OMRON)、SOC(Salient Objects in Clutter)等五个目标分割数据集上进行了验证:将所提推断网络作为基准网络,所提自蒸馏模型分割性能在Fβ指标上平均提升3.01%,比免教师(TF)自蒸馏模型增加了1.00%;所提网络与近期的残差分割网络(R2Net)相比,参数量减少了2.33×10^(6),推断帧率提升了2.53%,浮点运算量减少了40.50%,分割性能提升了0.51%。实验结果表明:所提方法能有效兼顾性能与效率,适用于计算和存储资源受限的应用场景。展开更多
蛋白质二级结构预测是公认的生物信息学领域的国际性难题。以基于内在认知机理的知识发现理论(knowledge discovery theory based on inner cognitive mechanism,KDTICM)理论的扩展性研究与数据库中的知识发现(knowledge discovery in d...蛋白质二级结构预测是公认的生物信息学领域的国际性难题。以基于内在认知机理的知识发现理论(knowledge discovery theory based on inner cognitive mechanism,KDTICM)理论的扩展性研究与数据库中的知识发现(knowledge discovery in database*,KDD*)模型为基础,提出一种基于结构序列的多分类算法——SAC(structuralassociation classification),可以有效地解决蛋白质二级结构预测问题。该算法借助设定支持度阈值的精化知识库的方法,其预测准确率能够超过85%。以该算法为核心,构建了一个蛋白质二级预测模型——复合金字塔模型。实验证明,在RS126、CB513I、LP数据集上的预测准确率均超过80%,超过目前已知的国际主流水平。展开更多
文摘针对农业新闻目前面临的针对性差、分类不清和数据集缺乏等问题,提出一种基于ERNIE(Enhanced Representation through kNowledge IntEgration)、深度金字塔卷积神经网络(DPCNN)和双向门控循环单元(BiGRU)的农业新闻分类模型——EGC。首先利用ERNIE对数据集进行编码,然后利用改进后的DPCNN和BiGRU同时提取新闻文本的特征,再将两者提取的特征进行拼合并经过Softmax得到最终结果。为了使EGC模型适用于农业新闻分类领域,对DPCNN进行改进,减少它的卷积层以保留更多特征。实验结果表明,与ERNIE相比,EGC模型的精确率、召回率和F1分数别提升了1.47、1.29和1.42个百分点,优于传统分类模型。
文摘当前的目标分割模型难以兼顾分割性能与推断效率,为此提出一种基于尺度注意知识迁移的自蒸馏目标分割方法。首先,构建了一个仅利用主干特征的目标分割网络作为推断网络,实现高效的前向推断过程。其次,提出了一种基于尺度注意知识的自蒸馏学习模型:一方面,设计了具有尺度注意机制的金字塔特征模块,利用尺度注意机制自适应地捕获不同语义水平的上下文信息,提取更具区分性的自蒸馏知识;另一方面,融合交叉熵、KL(Kullback-Leibler)散度和L2距离构造蒸馏损失,高效驱动蒸馏知识向分割网络迁移,提升泛化性能。该方法在COD(Camouflaged Object Detection)、DUT-O(Dalian University of Technology-OMRON)、SOC(Salient Objects in Clutter)等五个目标分割数据集上进行了验证:将所提推断网络作为基准网络,所提自蒸馏模型分割性能在Fβ指标上平均提升3.01%,比免教师(TF)自蒸馏模型增加了1.00%;所提网络与近期的残差分割网络(R2Net)相比,参数量减少了2.33×10^(6),推断帧率提升了2.53%,浮点运算量减少了40.50%,分割性能提升了0.51%。实验结果表明:所提方法能有效兼顾性能与效率,适用于计算和存储资源受限的应用场景。
文摘蛋白质二级结构预测是公认的生物信息学领域的国际性难题。以基于内在认知机理的知识发现理论(knowledge discovery theory based on inner cognitive mechanism,KDTICM)理论的扩展性研究与数据库中的知识发现(knowledge discovery in database*,KDD*)模型为基础,提出一种基于结构序列的多分类算法——SAC(structuralassociation classification),可以有效地解决蛋白质二级结构预测问题。该算法借助设定支持度阈值的精化知识库的方法,其预测准确率能够超过85%。以该算法为核心,构建了一个蛋白质二级预测模型——复合金字塔模型。实验证明,在RS126、CB513I、LP数据集上的预测准确率均超过80%,超过目前已知的国际主流水平。