期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于知识图偏好注意力网络的长短期推荐模型及其更新方法 被引量:3
1
作者 顾军华 樊帅 +1 位作者 李宁宁 张素琪 《计算机应用》 CSCD 北大核心 2022年第4期1079-1086,共8页
目前,知识图谱推荐的研究主要集中在模型建立和训练上。然而在实际应用中,需要使用增量更新方法定期更新模型来适应新用户和老用户偏好的改变。针对大部分该类模型仅利用用户的长期兴趣表示做推荐,而没有考虑用户的短期兴趣且聚合邻域... 目前,知识图谱推荐的研究主要集中在模型建立和训练上。然而在实际应用中,需要使用增量更新方法定期更新模型来适应新用户和老用户偏好的改变。针对大部分该类模型仅利用用户的长期兴趣表示做推荐,而没有考虑用户的短期兴趣且聚合邻域实体得到项目向量表示时聚合方式的可解释性不足,以及更新模型的过程中存在灾难性遗忘的问题,提出基于知识图偏好注意力网络的长短期推荐(KGPATLS)模型及其更新方法。首先,通过KGPATLS模型提出偏好注意力网络的聚合方式以及结合用户长期兴趣和短期兴趣的用户表示方法;然后,为了缓解更新模型存在的灾难性遗忘问题,提出融合预测采样和知识蒸馏的增量更新方法(FPSKD)。将提出的KGPATLS模型和FPSKD方法在MovieLens-1M和Last.FM两个数据集上进行实验。相较于最优基线模型知识图谱卷积网络(KGCN),KGPATLS模型的曲线下面积(AUC)指标在两个数据集上分别有2.2%和1.4%的提升,准确率(Acc)指标分别有2.5%和2.9%的提升。在两个数据集上对比FPSKD与三个基线增量更新方法Fine Tune、Random Sampling、Full Batch,FPSKD在AUC和Acc指标上优于Fine Tune、Random Sampling,在训练时间指标上FPSKD分别降低到Full Batch的大约1/8和1/4。实验结果验证了KGPATLS模型的性能,而FPSKD在保持模型性能的同时可以高效地更新模型。 展开更多
关键词 长短期推荐模型 知识图偏好注意力网络 增量更新 预测采样 知识蒸馏
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部