期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
基于知识增强的中文命名实体识别 被引量:12
1
作者 胡新棒 于溆乔 +1 位作者 李邵梅 张建朋 《计算机工程》 CAS CSCD 北大核心 2021年第11期84-92,共9页
基于字词联合的中文命名实体识别模型能够兼顾字符级别与词语级别的信息,但受未登录词影响较大且在小规模数据集上存在训练不充分等问题。在现有LR-CNN模型的基础上,提出一种结合知识增强的中文命名实体识别模型,采用相对位置编码的多... 基于字词联合的中文命名实体识别模型能够兼顾字符级别与词语级别的信息,但受未登录词影响较大且在小规模数据集上存在训练不充分等问题。在现有LR-CNN模型的基础上,提出一种结合知识增强的中文命名实体识别模型,采用相对位置编码的多头注意力机制提高模型上下文信息捕捉能力,通过实体词典融入先验知识降低未登录词的影响并增强模型学习能力。实验结果表明,该模型在保持较快解码速度和较低计算资源占用量的情况下,在MSRA、People Daily、Resume、Weibo数据集上相比SoftLexicon、FLAT等模型F1值均有明显提升,同时具有较强的鲁棒性和泛化能力。 展开更多
关键词 中文命名实体识别 注意力机制 知识增强 未登录词 小规模数据集
下载PDF
自然语言预训练模型知识增强方法综述 被引量:8
2
作者 孙毅 裘杭萍 +2 位作者 郑雨 张超然 郝超 《中文信息学报》 CSCD 北大核心 2021年第7期10-29,共20页
将知识引入到依靠数据驱动的人工智能模型中是实现人机混合智能的一种重要途径。当前以BERT为代表的预训练模型在自然语言处理领域取得了显著的成功,但是由于预训练模型大多是在大规模非结构化的语料数据上训练出来的,因此可以通过引入... 将知识引入到依靠数据驱动的人工智能模型中是实现人机混合智能的一种重要途径。当前以BERT为代表的预训练模型在自然语言处理领域取得了显著的成功,但是由于预训练模型大多是在大规模非结构化的语料数据上训练出来的,因此可以通过引入外部知识在一定程度上弥补其在确定性和可解释性上的缺陷。该文针对预训练词嵌入和预训练上下文编码器两个预训练模型的发展阶段,分析了它们的特点和缺陷,阐述了知识增强的相关概念,提出了预训练词嵌入知识增强的分类方法,将其分为四类:词嵌入改造、层次化编解码过程、优化注意力和引入知识记忆。将预训练上下文编码器的知识增强方法分为任务特定和任务通用两大类,并根据引入知识的显隐性对其中任务通用的知识增强方法进行了进一步的细分。该文通过分析预训练模型知识增强方法的类型和特点,为实现人机混合的人工智能提供了模式和算法上的参考依据。 展开更多
关键词 预训练语言模型 知识增强 预训练词嵌入 预训练上下文编码器
下载PDF
知识增强的自然语言生成研究综述 被引量:3
3
作者 梁明轩 王石 +3 位作者 朱俊武 李阳 高翔 焦志翔 《计算机科学》 CSCD 北大核心 2023年第S01期1-8,共8页
自然语言生成(Natural Language Generation,NLG)任务是自然语言处理(Natural Languge Processing,NLP)任务中的一个子类,并且是一项具有挑战性的任务。随着深度学习在自然语言处理中的大量应用,其已经变成自然语言生成中处理各种任务... 自然语言生成(Natural Language Generation,NLG)任务是自然语言处理(Natural Languge Processing,NLP)任务中的一个子类,并且是一项具有挑战性的任务。随着深度学习在自然语言处理中的大量应用,其已经变成自然语言生成中处理各种任务的主要方法。自然语言生成任务中主要有问答任务、生成摘要任务、生成评论任务、机器翻译任务、生成式对话任务等。传统的生成模型依赖输入文本,基于有限的知识生成文本。为解决这个问题,引入了知识增强的方法。首先介绍了自然语言生成的研究背景和重要模型,然后针对自然语言处理归纳介绍了提高模型性能的方法,以及基于内部知识(如提取关键词增强生成、围绕主题词等)和外部知识(如借助外部知识图谱增强生成)集成到文本生成过程中的方法和架构。最后,通过分析生成任务面临的一些问题,讨论了未来的挑战和研究方向。 展开更多
关键词 自然语言生成 知识增强 深度学习 知识图谱 关键词提取 主题词
下载PDF
基于外部知识筛选的主题文本生成技术研究 被引量:1
4
作者 王沛 杨频 +2 位作者 程芃森 代金鞘 贾鹏 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期69-77,共9页
在自然语言生成任务中,主题文本生成是一项富有挑战性的工作,其主要难点在于:源信息量远小于目标生成的信息量.为了解决该问题,本文提出一个基于外部知识筛选的主题文本生成模型Trans-K,通过引入与主题词相关的外部知识来丰富源信息,进... 在自然语言生成任务中,主题文本生成是一项富有挑战性的工作,其主要难点在于:源信息量远小于目标生成的信息量.为了解决该问题,本文提出一个基于外部知识筛选的主题文本生成模型Trans-K,通过引入与主题词相关的外部知识来丰富源信息,进而提高生成文本的质量.本文为了解决引入外部知识的“一词多义”问题,提出一种基于线性变换的主题向量计算方法,用于筛选和主题词语义一致的外部知识;提出一种基于注意力机制的外部权重计算方法,为每个外部词设定一个主题权重,使其更贴合文本语义;为了解决主题词(含候选词)在生成文本中反复出现的问题,提出一种基于多头注意力机制的内部权重计算方法.在EASSY数据集上的实验表明,与基线相比,Trans-K生成文本质量的各项指标更优.此外,人类评估表明,该模型可生成与主题更相关、语言更连贯、且符合语义逻辑的文本. 展开更多
关键词 自然语言生成 主题文本生成 TRANSFORMER HOWNET 知识增强
下载PDF
知识图谱的双注意力机制推荐方法
5
作者 周北京 王海荣 +1 位作者 王怡梦 马赫 《中国科技论文》 CAS 2024年第2期178-185,223,共9页
为解决知识图谱推荐方法中存在的忽略用户个人信息,或将用户和项目采用相同注意力机制,致使用户和项目的潜在语义表达不充分的问题,提出了一种知识增强的双注意力机制推荐方法。采用交叉压缩融合单元获取用户个人信息和交互历史的潜在特... 为解决知识图谱推荐方法中存在的忽略用户个人信息,或将用户和项目采用相同注意力机制,致使用户和项目的潜在语义表达不充分的问题,提出了一种知识增强的双注意力机制推荐方法。采用交叉压缩融合单元获取用户个人信息和交互历史的潜在特征,以增强用户特征表示;使用不同注意力机制关注用户和项目的重要邻居,以增强知识图谱中的结构信息和语义信息表示。为了验证方法的有效性,在MovieLens-1M、MovieLens-20M、Book-Crossing和Last. FM这4个数据集上进行实验,并与RippletNet、KGAT、CKAN等6种方法进行对比分析。结果表明,本文方法与RippletNet、KGCN、LKGR等方法相比,受试者工作特征曲线下面积(area under the receiver operator characteristic curve,AUC)性能平均提升了5.34%。 展开更多
关键词 知识图谱 推荐方法 知识增强 双注意力机制
下载PDF
基于句法CYK图神经网络的知识增强文本分类
6
作者 章巍 陈学奇 +2 位作者 韩剑锋 虞小江 吴海燕 《计算机应用》 CSCD 北大核心 2024年第S01期11-17,共7页
句子分类方法主要分为基于特征工程的机器学习方法、序列化模型和结构化模型,但基于特征工程的机器学习方法对词序不敏感易产生稀疏向量,序列化模型忽略了句子的短语、依存关系等句法结构信息,结构化模型如句法树、二叉树等的准确率受... 句子分类方法主要分为基于特征工程的机器学习方法、序列化模型和结构化模型,但基于特征工程的机器学习方法对词序不敏感易产生稀疏向量,序列化模型忽略了句子的短语、依存关系等句法结构信息,结构化模型如句法树、二叉树等的准确率受句法解析工具影响。针对上述问题,构建基于句法CYK(Cocke Younger Kasami)图神经网络(GNN)的知识增强文本分类模型S-CYK,对输入句子分别构建对应的短语树和CYK图以形成句法CYK图,并利用关系图注意力网络(RGAT)进行句子分类。在公共数据集AG’s News、DBpedia、ARP(Amazon Review Polarity)和ARF(Amazon Review Full)上的实验结果表明,与现有先进模型半监督变分自编码器(SSVAE)、对抗性微调BERT(AFTB)、基于GloVe的ABLSTM(GloVe+ABLSTM)和融合FastText的CNN(CNN with FastText)相比,S-CYK模型在4个数据集的准确率提升了0.04%~1.21%。S-CYK使用句法CYK图结构进行知识增强,能有效增强聚合句子信息的能力。 展开更多
关键词 句法知识 CYK算法 知识增强 图神经网络 文本分类
下载PDF
基于知识增强的文本语义匹配模型研究
7
作者 张贞港 余传明 《情报学报》 CSCD 北大核心 2024年第4期416-429,共14页
文本语义匹配模型在信息检索、文本挖掘等领域已经获得了广泛应用。为解决现有模型主要从文本自身角度判断文本之间的语义关系而忽略对外部知识有效利用的问题,本文提出一种新的基于知识增强的文本语义匹配模型,以知识图谱实体作为外部... 文本语义匹配模型在信息检索、文本挖掘等领域已经获得了广泛应用。为解决现有模型主要从文本自身角度判断文本之间的语义关系而忽略对外部知识有效利用的问题,本文提出一种新的基于知识增强的文本语义匹配模型,以知识图谱实体作为外部知识,有效建模文本的外部知识信息,并自适应地过滤外部知识中存在的噪声。针对自然语言推理和释义识别两个文本语义匹配任务,与基线方法相比,本文模型在大多数指标上取得了最优效果。研究结果表明,本文模型有助于揭示知识图谱在文本语义匹配任务中的作用,为将知识图谱应用到智能信息服务领域提供了参考。 展开更多
关键词 文本语义匹配 信息检索 知识图谱 知识增强
下载PDF
基于知识增强的深度新闻推荐网络 被引量:6
8
作者 刘琼昕 宋祥 覃明帅 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第3期286-294,共9页
在新闻推荐场景下,传统的基于文本特征的新闻推荐模型只考虑了词的共现关系,无法捕获词语的隐含词义和关联知识;而基于深度学习的推荐模型在融合知识图谱信息中仅仅考虑实体的信息,忽略了远距离实体之间的联系,造成实体之间的关联信息... 在新闻推荐场景下,传统的基于文本特征的新闻推荐模型只考虑了词的共现关系,无法捕获词语的隐含词义和关联知识;而基于深度学习的推荐模型在融合知识图谱信息中仅仅考虑实体的信息,忽略了远距离实体之间的联系,造成实体之间的关联信息和深层次语义联系的缺失.针对该问题提出了一种基于知识增强的深度新闻推荐网络(deep knowledge-enhanced network,DKEN),利用长短期记忆网络提取知识图谱中的实体路径特征,补充到注意力网络中,然后针对不同的候选新闻动态地构建用户的特征.实验表明该实体路径信息能提高模型的效果,在F1指标上提升大约1%. 展开更多
关键词 知识增强 深度新闻推荐网络 知识图谱 实体路径特征
下载PDF
基于文本知识增强的问题生成模型
9
作者 陈佳玉 王元龙 张虎 《计算机工程》 CAS CSCD 北大核心 2024年第6期86-93,共8页
预训练语言模型在大规模训练数据和超大规模算力的基础上,能够从非结构化的文本数据中学到大量的知识。针对三元组包含信息有限的问题,提出利用预训练语言模型丰富知识的问题生成方法。首先,利用预训练语言模型中丰富的知识增强三元组信... 预训练语言模型在大规模训练数据和超大规模算力的基础上,能够从非结构化的文本数据中学到大量的知识。针对三元组包含信息有限的问题,提出利用预训练语言模型丰富知识的问题生成方法。首先,利用预训练语言模型中丰富的知识增强三元组信息,设计文本知识生成器,将三元组中的信息转化为子图描述,丰富三元组的语义;然后,使用问题类型预测器预测疑问词,准确定位答案所在的领域,从而生成语义正确的问题,更好地控制问题生成的效果;最后,设计一种受控生成框架对关键实体和疑问词进行约束,保证关键实体和疑问词同时出现在问题中,使生成的问题更加准确。在公开数据集WebQuestion和PathQuestion中验证所提模型的性能。实验结果表明,与现有模型LFKQG相比,所提模型的BLUE-4、METEOR、ROUGE-L指标在WebQuestion数据集上分别提升0.28、0.16、0.22个百分点,在PathQuestion数据集上分别提升0.8、0.39、0.46个百分点。 展开更多
关键词 自然语言理解 问题生成 知识图谱 预训练语言模型 知识增强
下载PDF
基于知识增强预训练模型的司法文本摘要生成
10
作者 裴炳森 李欣 +1 位作者 胡凯茜 孙泽宇 《科学技术与工程》 北大核心 2024年第20期8587-8597,共11页
随着自然语言处理技术的发展,文本摘要技术已经被广泛应用在生活的方方面面,在司法领域,文本摘要技术能够帮助司法文本实现“降维”,对迅速了解案件详情,获取案件要素有很大的帮助,促使司法向信息化、智能化发展。但是现有的摘要生成模... 随着自然语言处理技术的发展,文本摘要技术已经被广泛应用在生活的方方面面,在司法领域,文本摘要技术能够帮助司法文本实现“降维”,对迅速了解案件详情,获取案件要素有很大的帮助,促使司法向信息化、智能化发展。但是现有的摘要生成模型应用在司法文本上,生成的摘要质量不尽如人意,还存在着生成重复、冗余,与现实情况不相符等问题,特别是当行为人存在多项罪名和多项判罚时,使用常见摘要生成模型生成的摘要会出现罪罚不匹配的情况。为了解决这些问题,提出基于知识增强预训练模型的司法文本摘要生成模型LCSG-ERNIE(legal case summary generation based on enhanced language representation with informative entities),该模型在预训练语言模型中融入司法知识,并结合对比学习的思想生成摘要,提高生成摘要的质量,减少出现的罪罚不匹配情况,最终通过实验证明提出的模型取得较好效果。 展开更多
关键词 文本摘要 知识增强 智慧司法 对比学习
下载PDF
基于大语言模型隐含语义增强的细粒度虚假新闻检测方法
11
作者 柯婧 谢哲勇 +3 位作者 徐童 陈宇豪 廖祥文 陈恩红 《计算机研究与发展》 EI CSCD 北大核心 2024年第5期1250-1260,共11页
随着生成式人工智能技术的发展,许多领域都得到了帮助与发展,但与此同时虚假信息的构建与传播变得更加简单,虚假信息的检测也随之难度增加.先前的工作主要聚焦于语法问题、内容煽动性等方面的特点,利用深度学习模型对虚假新闻内容进行建... 随着生成式人工智能技术的发展,许多领域都得到了帮助与发展,但与此同时虚假信息的构建与传播变得更加简单,虚假信息的检测也随之难度增加.先前的工作主要聚焦于语法问题、内容煽动性等方面的特点,利用深度学习模型对虚假新闻内容进行建模.这样的方式不仅缺乏对内容本身的判断,还无法回溯模型的判别原因.针对上述问题提出一种基于大语言模型隐含语义增强的细粒度虚假新闻检测方法.该方法充分挖掘并利用了现有的生成式大语言模型所具有的总结与推理能力,按照主干事件、细粒度次要事件和隐含信息推理的顺序进行层级式推导,逐步判别新闻的真实性.通过分解任务的方式,该方法最大程度发挥了模型的能力,提高了对虚假新闻的捕获能力,同时该方法也具有一定的可解释性,能够为检测提供判别依据. 展开更多
关键词 社交媒体 虚假新闻检测 大语言模型 事件抽取 知识增强
下载PDF
知识增强的自监督表格数据异常检测方法研究
12
作者 高小玉 赵晓永 王磊 《计算机工程与应用》 CSCD 北大核心 2024年第10期140-147,共8页
传统的监督异常检测方法快速发展,为了减少对标签的依赖,自监督预训练方法得到了广泛的研究,同时研究表明额外的内在语义知识嵌入对于表格学习至关重要。为了挖掘表格数据当中存在的丰富知识信息,提出了一种基于知识增强的自监督表格数... 传统的监督异常检测方法快速发展,为了减少对标签的依赖,自监督预训练方法得到了广泛的研究,同时研究表明额外的内在语义知识嵌入对于表格学习至关重要。为了挖掘表格数据当中存在的丰富知识信息,提出了一种基于知识增强的自监督表格数据异常检测方法(self-supervised tabular data anomaly detection method based on knowledge enhancement,STKE)并进行了改进。提出的数据处理模块将领域知识(语义)、统计数学知识融入到特征构建中,同时自监督预训练(参数学习)提供上下文知识先验,实现表格数据的丰富信息迁移。在原始数据上采用mask机制,通过学习相关的非遮掩特征来学习遮掩特征,同时预测在数据隐层空间加性高斯噪声的原始值。该策略促使模型即使在有噪声输入的情况下也能恢复原始的特征信息。使用混合注意机制有效提取数据特征之间的关联信息。在6个数据集上的实验结果展现了提出的方法优越的性能。 展开更多
关键词 异常检测 自监督 知识增强 预训练
下载PDF
基于知识增强的文本分类方法
13
作者 张博伦 赵亚慧 +1 位作者 姜克鑫 卢星华 《延边大学学报(自然科学版)》 CAS 2024年第2期78-86,共9页
为了解决文本分类任务中因部分数据质量差、数据不平衡和数据集过小等原因而导致的分类不准确问题,提出了一种基于知识增强的文本分类算法.首先,该算法通过加入外部知识对数据集进行数据增强;其次,使用GloVe词向量对原始文本和外部知识... 为了解决文本分类任务中因部分数据质量差、数据不平衡和数据集过小等原因而导致的分类不准确问题,提出了一种基于知识增强的文本分类算法.首先,该算法通过加入外部知识对数据集进行数据增强;其次,使用GloVe词向量对原始文本和外部知识进行词嵌入,并使用CNN、LSTM和BERT模型提取文本特征;再次,将提取到的原始文本特征和外部知识文本特征进行融合,以此得到最终的文本特征;最后,将融合后的文本特征送入多层感知机进行分类,以此得到文本分类的最终结果.在不同数据集上进行实验显示:在SST-5数据集上,模型CNN(KB)、LSTM(KB)和BERT(KB)的文本分类准确率比基线模型分别提高了5.01%、7.92%和1.5%;在SST-2数据集上,模型LSTM(KB)和BERT(KB)的文本分类准确率比基线模型分别提高了1.76%和1.29%;在IMDB数据集上,模型CNN(KB)、LSTM(KB)和BERT(KB)的文本分类准确率比基线模型分别提高了0.97%、2.87%和0.76%.上述结果表明,该文本分类算法可有效提高文本分类的准确性,并可为不同领域的文本分类应用提供参考. 展开更多
关键词 深度学习 神经网络 文本分类 知识增强 特征提取
下载PDF
基于原子特性知识增强的分子毒性预测方法
14
作者 方舒言 刘宇 +2 位作者 侯阿龙 秦欢欢 刘嵩 《计算机技术与发展》 2024年第3期155-162,共8页
当前基于深度学习的化学分子毒性预测方法主要利用了分子的字符串表示,但现有的字符串表示模型忽视了分子中不同原子的特性知识,从而导致学习模型未能充分利用领域知识。针对上述问题,提出了显式引入氢原子及利用摩根指纹半径增强原子... 当前基于深度学习的化学分子毒性预测方法主要利用了分子的字符串表示,但现有的字符串表示模型忽视了分子中不同原子的特性知识,从而导致学习模型未能充分利用领域知识。针对上述问题,提出了显式引入氢原子及利用摩根指纹半径增强原子特性知识的方法,使得毒性预测模型能够学习到化学分子中原子的特性知识。在改进的毒性预测模型中,用氢原子及原子特性知识增强的分子摩根指纹标识符序列作为输入,并在嵌入层额外引入了分子摩根指纹的半径特征。为了验证方法的有效性,对预训练后的模型在主流的毒性预测数据集Tox21上进行了微调和测试。实验结果表明,相比于现有的基于分子序列的化学分子毒性预测方法,改进的方法在多个通道上取得了最佳的AUC分数。 展开更多
关键词 分子毒性预测 自监督学习 知识增强 药物发现 摩根指纹
下载PDF
面向业务需求的知识增强大模型生成框架技术研究
15
作者 纪威宇 张永 姜巍 《软件》 2024年第5期158-160,共3页
近年来,大模型技术方兴未艾,在通用领域获得长足发展。然而,在军事、政务等关键领域训练数据不足导致专业领域的大模型应用能力难以满足用户的需求,特别是针对业务需求的多类型数据检索任务,通用大模型存在瓶颈。本文提出一种知识增强... 近年来,大模型技术方兴未艾,在通用领域获得长足发展。然而,在军事、政务等关键领域训练数据不足导致专业领域的大模型应用能力难以满足用户的需求,特别是针对业务需求的多类型数据检索任务,通用大模型存在瓶颈。本文提出一种知识增强的大模型跨数据检索框架,设计一种知识融合生长的大模型检索能力演进机制,利用大模型的自监督信号驱动领域知识持续生成,同时利用积累的知识持续增强大模型检索能力,在典型业务场景下开展原型系统构建与试验验证,在典型场景下检验框架对用户业务信息的查询与结果生成能力,实验结果表明,高质量的知识有助于提高大模型生成结果的精准性与有效性。 展开更多
关键词 大模型 知识增强 跨数据检索
下载PDF
基于知识增强和提示学习的小样本新闻主题分类方法
16
作者 余新言 曾诚 +2 位作者 王乾 何鹏 丁晓玉 《计算机应用》 CSCD 北大核心 2024年第6期1767-1774,共8页
基于预训练微调的分类方法通常需要大量带标注的数据,导致无法应用于小样本分类任务。因此,针对中文小样本新闻主题分类任务,提出一种基于知识增强和提示学习的分类方法KPL(Knowledge enhancement and Prompt Learning)。首先,利用预训... 基于预训练微调的分类方法通常需要大量带标注的数据,导致无法应用于小样本分类任务。因此,针对中文小样本新闻主题分类任务,提出一种基于知识增强和提示学习的分类方法KPL(Knowledge enhancement and Prompt Learning)。首先,利用预训练模型在训练集上学习最优的提示模板;其次,将提示模板与输入文本结合,使分类任务转化为完形填空任务;同时利用外部知识扩充标签词空间,丰富标签词的语义信息;最后,对预测的标签词与原始的标签进行映射。通过在THUCNews、SHNews和Toutiao这3个新闻数据集上进行随机采样,形成小样本训练集和验证集进行实验。实验结果表明,所提方法在上述数据集上的1-shot、5-shot、10-shot和20-shot任务上整体表现有所提升,尤其在1-shot任务上提升效果突出,与基线小样本分类方法相比,准确率分别提高了7.59、2.11和3.10个百分点以上,验证了KPL在小样本新闻主题分类任务上的有效性。 展开更多
关键词 新闻主题分类 提示学习 知识增强 小样本学习 文本分类
下载PDF
多类型知识增强的微博立场检测模型
17
作者 王天雨 袁嘉伟 +1 位作者 齐芮 李洋 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第1期79-90,共12页
针对文本立场检测中目标话题在微博文本中隐式出现以及文本语义隐含表达这2个核心问题,本文提出一种基于多类型知识增强与预训练语言模型相结合的立场检测新方法KE-BERT。该模型同时从知识图谱和百度百科中引入多类型的相关常识知识来... 针对文本立场检测中目标话题在微博文本中隐式出现以及文本语义隐含表达这2个核心问题,本文提出一种基于多类型知识增强与预训练语言模型相结合的立场检测新方法KE-BERT。该模型同时从知识图谱和百度百科中引入多类型的相关常识知识来弥补语义缺失,使用改进的预训练语言模型BERT作为编码器,然后通过卷积注意力机制对常识知识进行融合与聚焦,最后通过Softmax分类获得立场。该模型在NLPCC-2016语料库上实验的宏平均F_(1)值达到0.803,分类性能超越现有主流模型,验证了模型的有效性。 展开更多
关键词 立场检测 知识增强 BERT 卷积神经网络 注意力机制
下载PDF
面向多方面的双通道知识增强图卷积网络模型 被引量:1
18
作者 陈景景 韩虎 徐学锋 《计算机工程与科学》 CSCD 北大核心 2023年第12期2246-2255,共10页
基于方面的情感分析是一项细粒度的情感分析任务,旨在将方面与相应的情感词对齐,以进行特定于方面的情感极性推理。近年来,借助句法依赖信息的图神经网络情感分类方法成为该领域的一个研究热点,但是由于评论语句在内容表达和句法结构上... 基于方面的情感分析是一项细粒度的情感分析任务,旨在将方面与相应的情感词对齐,以进行特定于方面的情感极性推理。近年来,借助句法依赖信息的图神经网络情感分类方法成为该领域的一个研究热点,但是由于评论语句在内容表达和句法结构上的灵活性,仅利用句法依赖信息的建模方法仍然存在一定的不足。为了发挥情感知识与结构语义信息对评论语句的增强作用,提出一种双通道知识增强图卷积网络模型DualSyn-GCN。一方面根据方面与方面、方面与上下文之间的隐含关系进行句法依赖邻接矩阵的增强,另一方面从外部情感知识对方面的情感依赖进行学习,随后对2种不同增强表示进行融合,从而实现不同表示间的共享与互补。实验结果表明,相较于经典的基于特定方面的图卷积网络模型(ASGCN),该模型在LAP14数据集上的准确率和MF1值分别提升了2.34%和3.26%。 展开更多
关键词 方面级情感分析 句法依赖 知识增强 图卷积网络 情感知识
下载PDF
实体类别信息增强的命名实体识别算法 被引量:1
19
作者 刘明辉 唐望径 +4 位作者 许斌 仝美涵 王黎明 钟琦 徐剑军 《应用科学学报》 CAS CSCD 北大核心 2023年第1期1-9,共9页
中文命名实体识别(named entity recognition, NER)字符级别模型会忽略句子中词语的信息,为此提出了一种基于知识图谱中实体类别信息增强的中文NER方法。首先,使用分词工具对训练集进行分词,选出所有可能的词语构建词表;其次,利用通用... 中文命名实体识别(named entity recognition, NER)字符级别模型会忽略句子中词语的信息,为此提出了一种基于知识图谱中实体类别信息增强的中文NER方法。首先,使用分词工具对训练集进行分词,选出所有可能的词语构建词表;其次,利用通用知识图谱检索词表中实体的类别信息,并以简单有效的方式构建与字符相关的词集,根据词集中实体对应的类别信息生成实体类别信息集合;最后,采用词嵌入的方法将类别信息的集合转换成嵌入与字符嵌入拼接,以此丰富嵌入层生成的特征。所提出的方法可以作为嵌入层扩充特征多样性的模块使用,也可与多种编码器-解码器的模型结合使用。在微软亚洲研究院提出的中文NER数据集上的实验展现了该模型的优越性,相较于双向长短期记忆网络与双向长短期记忆网络+条件随机场模型,在评价指标F1上分别提升了11.00%与3.09%,从而验证了知识图谱中实体的类别信息对中文NER增强的有效性。 展开更多
关键词 命名实体识别 知识图谱 实体类别信息 知识增强
下载PDF
基于知识增强的企业实体关系预测模型
20
作者 王家祺 李文根 +4 位作者 关佶红 邢婷 魏小敏 邵冰清 付宠洁 《计算机科学》 CSCD 北大核心 2023年第10期146-155,共10页
随着知识图谱的不断发展,大量应用于工业界的产业知识图谱应运而生。然而,这些产业知识图谱经常缺乏充足的企业关联关系,如上下游关系、供应关系、合作关系、竞争关系等,导致其应用范围受到极大限制。现有企业关系预测研究大多仅关注知... 随着知识图谱的不断发展,大量应用于工业界的产业知识图谱应运而生。然而,这些产业知识图谱经常缺乏充足的企业关联关系,如上下游关系、供应关系、合作关系、竞争关系等,导致其应用范围受到极大限制。现有企业关系预测研究大多仅关注知识图谱中三元组本身的结构信息,未能充分利用企业文本描述和企业关联实体的描述等多视角信息。为解决该问题,提出了一种基于知识增强的企业实体关系预测模型KERP。模型首先通过多视角实体特征三元组学习,完善企业实体特征表示;其次,利用图注意力网络获取实体的高阶语义表示,并与TransR模型学习的实体关系低阶语义表示进行融合,进一步增强企业实体及其关系的特征表示;最后,通过二维卷积解码器ConvE实现对企业实体关系的预测。在新能源汽车产业知识图谱数据上的实验分析表明,与现有主流实体关系预测模型相比,KERP在预测企业关系上具有更好的效果,在F1值上有6.7%的提升。此外,在多个公开实体关系预测数据集上的实验结果表明,KERP模型在一般化的实体关系预测任务上也具有较好的通用性。 展开更多
关键词 产业知识图谱 企业实体关系 知识补全 链路预测 知识增强
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部