期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于层次结构图的多跳知识图谱问答模型
1
作者 刘昀抒 申彦明 +1 位作者 齐恒 尹宝才 《计算机工程》 CSCD 北大核心 2024年第1期101-109,共9页
知识图谱问答(KBQA)旨在理解用户的自然语言问句,在结构化的知识图谱中通过检索、推理等手段来获取答案实体。近年来,多跳KBQA备受关注,然而,复杂问句中通常存在多个关系意图,已有KBQA方法大多忽视了推理关系链的关系顺序问题。为此,提... 知识图谱问答(KBQA)旨在理解用户的自然语言问句,在结构化的知识图谱中通过检索、推理等手段来获取答案实体。近年来,多跳KBQA备受关注,然而,复杂问句中通常存在多个关系意图,已有KBQA方法大多忽视了推理关系链的关系顺序问题。为此,提出一种基于层次结构图的多跳知识图谱问答模型(HSG-KBQA),建模自然语言问句的关系层次顺序,指导模型在每个推理步选择合理的关系意图。设计一种层次结构图,显式地体现问句中关系的层次距离,利用LSTM-BiGCN编码层将词语间的依存信息编码到问句中;提出虚拟节点的概念,利用图池化技术过滤不重要的节点,学习推理过程中知识图谱的状态;设计基于注意力机制和层次权重的解码器来优化指令生成,使推理指令更匹配问句中的关系链顺序。实验结果表明,HSG-KBQA在WebQuestionsSP数据集上取得了71.3%的Hits@1分数,在PathQuestions数据集上取得了97.3%(PQ-2H)和89.7%(PQ-3H)的Hits@1分数,均优于对照基准模型,表明HSG-KBQA模型在KBQA任务中具有更好的性能。 展开更多
关键词 知识图谱问答 问答系统 多跳问答 图神经网络 动态推理
下载PDF
基于知识图谱全局和局部特征的复杂问答方法 被引量:1
2
作者 陈跃鹤 贾永辉 +2 位作者 谈川源 陈文亮 张民 《软件学报》 EI CSCD 北大核心 2023年第12期5614-5628,共15页
近年来,研究者已经提出多种方法来解决知识库问答(KBQA)中的复杂问题,并取得一定成果.然而,由于语义构成的复杂性以及可能存在推理路径的缺失,复杂问题的求解效果依然不佳.为了更好地解决这类问题,提出基于知识图谱全局和局部特征的问... 近年来,研究者已经提出多种方法来解决知识库问答(KBQA)中的复杂问题,并取得一定成果.然而,由于语义构成的复杂性以及可能存在推理路径的缺失,复杂问题的求解效果依然不佳.为了更好地解决这类问题,提出基于知识图谱全局和局部特征的问答方法——CGL-KBQA.所提方法利用知识嵌入技术提取知识图谱整体的拓扑结构和语义特征作为候选实体节点的全局特征,根据实体表示和问句表示将复杂问答建模为复合的三元组分类任务.同时,将图谱在搜索过程生成的核心推导路径作为局部特征,结合问句的语义相似性来构建候选实体不同维度特征,最终形成混合特征评分器.由于最终推理路径可能缺失,采用基于无监督的多重聚类方法设计了聚类器模块,进而根据候选实体的两类特征表示直接生成最终答案簇,这使得非完全知识图谱问答成为可能.实验结果表明,所提方法在两个常见KBQA数据集上均取得不错的效果,特别是在图谱知识不完全的情况下也具备非常好的效果. 展开更多
关键词 知识图谱问答 信息检索 知识图谱嵌入
下载PDF
多通道特征融合的实体链接模型泛化性能优化
3
作者 陈阳 万卫兵 《计算机工程与应用》 CSCD 北大核心 2023年第16期125-134,共10页
实体链接是知识库问答和知识图谱构建的关键环节,中文语料库的语义表达稀疏,存在大量难以区分的相似实体,一般模型过于依赖除原始问答以外的特征信息,很难完全学习文本特征,使得实体链接准确率难以提高,进而限制了问答等上层应用的性能... 实体链接是知识库问答和知识图谱构建的关键环节,中文语料库的语义表达稀疏,存在大量难以区分的相似实体,一般模型过于依赖除原始问答以外的特征信息,很难完全学习文本特征,使得实体链接准确率难以提高,进而限制了问答等上层应用的性能上限。针对这些问题,聚焦问答系统实体链接的候选生成和候选消歧,将实体消歧视为分类任务,构建了一种基于Bi-LSTM和CNN的多通道网络模型,提出阈值权重拼接策略融合CNN和LSTM通道提取的多维特征。引入双向注意力机制,充分挖掘问句提及表征和知识库实体描述之间的深层语义关系,有效降低问答对额外特征规则的依赖,以便应用在多领域知识库中。实验结果表明,在仅依靠问答原始信息的情况下,提出的实体链接模型显著提高了问答系统的整体性能,并具有较强的泛化性,在公开数据集CCKS2019-CKBQA和NLPCC-2016KBQA中取得了最优的Acc@1和F1值。 展开更多
关键词 知识库问答 实体链接 多通道 特征融合 双向注意力机制 泛化性能
下载PDF
基于问句感知图卷积的教育知识库问答方法 被引量:2
4
作者 蔺奇卡 张玲玲 +1 位作者 刘均 赵天哲 《计算机科学与探索》 CSCD 北大核心 2021年第10期1880-1887,共8页
近年来,随着教育信息化的不断深入,海量教育资源和教学数据不断累积,一些教育知识库被提出,这为数据驱动的智慧教育提供了良好的发展条件。基于教育知识库的问答方法能够为学习者提供即时的答疑辅导,进而有效提升学习者的学习兴趣和效... 近年来,随着教育信息化的不断深入,海量教育资源和教学数据不断累积,一些教育知识库被提出,这为数据驱动的智慧教育提供了良好的发展条件。基于教育知识库的问答方法能够为学习者提供即时的答疑辅导,进而有效提升学习者的学习兴趣和效率。然而,目前特定于教育领域的知识库问答研究较少,且开放领域的知识库问答方法大多独立地建模问句和候选答案实体,因而建模效果有限。基于此,提出一种基于问句感知图卷积网络的教育知识库问答方法。首先,针对特定问句,提取其中的问句描述信息和查询实体集,并分别通过Transformer和预训练的知识库嵌入进行处理得到两者的表示;其次,根据查询实体集从知识库中抽取候选答案集的子图,并通过双注意力的图卷积神经网络更新节点信息,其中注意力的得分分别利用问句描述信息和查询实体集的表示,进而实现问句感知;最后,融合问句描述信息、查询实体集和候选实体表示来计算得分,并预测答案。在真实数据集MOOC Q&A上进行实验,采用预测准确率和平均倒数排名的指标进行评估,实验结果表明提出的方法优于基准模型。 展开更多
关键词 图卷积网络(GCN) 注意力 教育知识库 知识库问答(kbqa) 知识图谱
下载PDF
Statistical Learning for Semantic Parsing: A Survey 被引量:1
5
作者 Qile Zhu Xiyao Ma Xiaolin Li 《Big Data Mining and Analytics》 2019年第4期217-239,共23页
A long-term goal of Artificial Intelligence(AI) is to provide machines with the capability of understanding natural language. Understanding natural language may be referred as the system must produce a correct respons... A long-term goal of Artificial Intelligence(AI) is to provide machines with the capability of understanding natural language. Understanding natural language may be referred as the system must produce a correct response to the received input order. This response can be a robot move, an answer to a question, etc. One way to achieve this goal is semantic parsing. It parses utterances into semantic representations called logical form, a representation of many important linguistic phenomena that can be understood by machines. Semantic parsing is a fundamental problem in natural language understanding area. In recent years, researchers have made tremendous progress in this field. In this paper, we review recent algorithms for semantic parsing including both conventional machine learning approaches and deep learning approaches. We first give an overview of a semantic parsing system, then we summary a general way to do semantic parsing in statistical learning. With the rise of deep learning, we will pay more attention on the deep learning based semantic parsing, especially for the application of Knowledge Base Question Answering(KBQA). At last, we survey several benchmarks for KBQA. 展开更多
关键词 DEEP learning SEMANTIC PARSING knowledge base question answering(kbqa)
原文传递
基于特征联合与多注意力的实体关系链接 被引量:1
6
作者 付林 刘钊 +1 位作者 邱晨 高峰 《计算机工程》 CAS CSCD 北大核心 2022年第8期53-61,共9页
实体链接和关系链接作为知识库问答的核心组件链接自然语言问题和知识库信息,通常作为两个独立的任务执行,但该执行方式忽略了链接中产生的信息间的相互影响。同时,将候选实体和关系分别计算相似性的方法没有考虑候选实体和关系的内在... 实体链接和关系链接作为知识库问答的核心组件链接自然语言问题和知识库信息,通常作为两个独立的任务执行,但该执行方式忽略了链接中产生的信息间的相互影响。同时,将候选实体和关系分别计算相似性的方法没有考虑候选实体和关系的内在联系。提出一种基于神经网络的特征联合和多注意力的实体关系链接方法,运用神经网络对问题、实体、关系以及实体-关系对进行编码和向量表示学习,通过添加注意力机制的方法获取候选实体及关系在问题中的权重信息,在计算实体(关系)向量与问题向量的相似性时加入实体-关系对向量,利用实体-关系对中包含的信息提高链接的精度。在LC-QuAD和QALD-7数据集上的实验结果表明,与Falcon模型相比,该方法至少提高了1%的链接精度。 展开更多
关键词 知识库问答 联合实体关系链接 实体-关系对 注意力机制 知识图谱
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部