期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进Mask R-CNN的刮板输送机铁质异物多目标检测 被引量:10
1
作者 史凌凯 耿毅德 +1 位作者 王宏伟 王洪利 《工矿自动化》 北大核心 2022年第10期55-61,共7页
刮板输送机是煤矿井下的关键运输设备,铁质异物进入刮板输送机会引发磨损、断链等,甚至会造成停产、伤人等严重事故。现有刮板输送机异物识别方法存在对井下图像的适应性较差、无法区分异物类别与数量等问题。针对上述问题,提出了一种... 刮板输送机是煤矿井下的关键运输设备,铁质异物进入刮板输送机会引发磨损、断链等,甚至会造成停产、伤人等严重事故。现有刮板输送机异物识别方法存在对井下图像的适应性较差、无法区分异物类别与数量等问题。针对上述问题,提出了一种基于改进掩码区域卷积神经网络(Mask R-CNN)的刮板输送机铁质异物多目标检测方法。采用基于Laplace算子的图像增强算法对井下低照度、高粉尘环境下采集的图像进行预处理,对增强后的图像进行标注,制作数据集。采用Mask R-CNN模型的ResNet-50特征提取器获取铁质异物图像特征;采用特征金字塔网络进行特征融合,保证同时拥有高层的语义特征(如类别、属性等)和低层的轮廓特征(如颜色、轮廓、纹理等),以提高小尺度铁质异物识别精度;针对Mask R-CNN模型生成的锚点与待检测的铁质异物尺寸不对应的问题,对Mask R-CNN模型进行改进,采用k-meansⅡ聚类算法代替原来的锚点生成方案,通过遍历数据集中标注框的长宽信息得到聚类中心点,实现刮板输送机铁质异物多目标检测。实验结果表明,改进Mask R-CNN模型对单张图像的平均检测时间为0.732 s,与Mask R-CNN,YOLOv5相比,分别缩短0.093,0.002 s;平均精度为91.7%,与Mask R-CNN,YOLOv5相比,分别提高11.4%,2.9%。 展开更多
关键词 刮板输送机 铁质异物 多目标检测 深度学习 Mask R-CNN k-means聚类算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部