针对传统单只股票预测模型预测精度低以及传统神经网络训练过程复杂的问题,提出一种基于ESN(Echo State Network)的地区行业通用模型,该模型可预测同地区同行业内任意股票。使用ESN建立了上海地区房地产行业的股价预测通用模型,简化了...针对传统单只股票预测模型预测精度低以及传统神经网络训练过程复杂的问题,提出一种基于ESN(Echo State Network)的地区行业通用模型,该模型可预测同地区同行业内任意股票。使用ESN建立了上海地区房地产行业的股价预测通用模型,简化了训练过程,且与单只股票预测模型相比,该通用模型预测精度明显提高。在通用模型基础上提出一种基于数据波动性聚类的KMeans-ESN模型,通过实验得出:基于ESN的短期股价预测地区行业通用模型适合波动大的数据、基于数据波动性聚类的KMeans-ESN短期股价预测模型适合波动小的数据。展开更多
碳中和作为应对气候变化的关键策略,对利益相关者和国家可持续发展具有重要影响.鉴于此,为提高企业碳减排信用风险的预测准确性,本文以2003—2020年2939家上市企业为研究对象,并构建了一种融合熵权TOPSIS-Kmeans-BPNN的新型企业碳减排...碳中和作为应对气候变化的关键策略,对利益相关者和国家可持续发展具有重要影响.鉴于此,为提高企业碳减排信用风险的预测准确性,本文以2003—2020年2939家上市企业为研究对象,并构建了一种融合熵权TOPSIS-Kmeans-BPNN的新型企业碳减排信用风险预警模型.本文首先运用熵权TOPSIS(technique for order preference by similarity to ideal solution)对企业碳减排信用风险进行综合评分;然后对评估结果进行聚类,获得5种企业信用风险的等级,帮助BPNN(back propagation neural network)更好地进行监督学习;再是引入SMOTE算法(synthetic minority over-sampling technique),在少数等级企业样本中进行插值并生成新样本,以解决各等级企业样本不均衡问题;最后通过消融和多模型对比实验,验证本文所建模型的预测性能.结果表明:第一,各项碳减排指标对各信用风险等级企业的影响程度存在明显差异.其中,影响程度最高的是煤炭碳排放量指标,影响程度最低的是企业碳排放量指标;第二,利用XGBoost(extreme gradient boosting)算法筛选指标有效提高了模型的预测性能,平均提升了3.55%;第三,与其它模型相比,本文模型的预测准确率达99.05%,平均提升了17.38%,表明该模型是可行的,可为金融机构进行信用评级提供技术支撑.展开更多
文摘针对传统单只股票预测模型预测精度低以及传统神经网络训练过程复杂的问题,提出一种基于ESN(Echo State Network)的地区行业通用模型,该模型可预测同地区同行业内任意股票。使用ESN建立了上海地区房地产行业的股价预测通用模型,简化了训练过程,且与单只股票预测模型相比,该通用模型预测精度明显提高。在通用模型基础上提出一种基于数据波动性聚类的KMeans-ESN模型,通过实验得出:基于ESN的短期股价预测地区行业通用模型适合波动大的数据、基于数据波动性聚类的KMeans-ESN短期股价预测模型适合波动小的数据。
文摘碳中和作为应对气候变化的关键策略,对利益相关者和国家可持续发展具有重要影响.鉴于此,为提高企业碳减排信用风险的预测准确性,本文以2003—2020年2939家上市企业为研究对象,并构建了一种融合熵权TOPSIS-Kmeans-BPNN的新型企业碳减排信用风险预警模型.本文首先运用熵权TOPSIS(technique for order preference by similarity to ideal solution)对企业碳减排信用风险进行综合评分;然后对评估结果进行聚类,获得5种企业信用风险的等级,帮助BPNN(back propagation neural network)更好地进行监督学习;再是引入SMOTE算法(synthetic minority over-sampling technique),在少数等级企业样本中进行插值并生成新样本,以解决各等级企业样本不均衡问题;最后通过消融和多模型对比实验,验证本文所建模型的预测性能.结果表明:第一,各项碳减排指标对各信用风险等级企业的影响程度存在明显差异.其中,影响程度最高的是煤炭碳排放量指标,影响程度最低的是企业碳排放量指标;第二,利用XGBoost(extreme gradient boosting)算法筛选指标有效提高了模型的预测性能,平均提升了3.55%;第三,与其它模型相比,本文模型的预测准确率达99.05%,平均提升了17.38%,表明该模型是可行的,可为金融机构进行信用评级提供技术支撑.