In the 1940s, KIRKENDALL showed that diffusion in binary solid solutions cannot be described by only one diffusion coefficient. Rather, one has to consider the diffusivity of both species. His findings changed the tre...In the 1940s, KIRKENDALL showed that diffusion in binary solid solutions cannot be described by only one diffusion coefficient. Rather, one has to consider the diffusivity of both species. His findings changed the treatment of diffusion data and the theory of diffusion itself. A diffusion-based framework was successfully employed to explain the behaviour of the Kirkendall plane. Nonetheless, the complexity of a multiphase diffusion zone and the morphological evolution during interdiffusion requires a physico-chemical approach. The interactions in binary and more complex systems are key issues from both the fundamental and technological points of view. This paper reviews the Kirkendall effect from the circumstances of its discovery to recent developments in its understanding, with broad applicability in materials science and engineering.展开更多
The dynamics of oxidation of cobalt nanoparticles were directly revealed by in situ environmental transmission electron microscopy.Firstly,cobalt nanoparticles were oxidized to polycrystalline cobalt monoxide,then to ...The dynamics of oxidation of cobalt nanoparticles were directly revealed by in situ environmental transmission electron microscopy.Firstly,cobalt nanoparticles were oxidized to polycrystalline cobalt monoxide,then to polycrystalline tricobalt tetroxide,in the presence of oxygen with a low partial pressure.Numerous cavities(or voids) were formed during the oxidation,owing to the Kirkendall effect.Analysis of the oxides growth suggested that the oxidation of cobalt nanoparticles followed a parabolic rate law,which was consistent with diffusion-limited kinetics.In situ transmission electron microscopy allowed potential atomic oxidation pathways to be considered.The outward diffusion of cobalt atoms inside the oxide layer controlled the oxidation,and formed the hollow structure.Irradiation by the electron beam,which destroyed the sealing effect of graphite layer coated on the cobalt surface and resulted in fast oxidation rate,played an important role in activating and promoting the oxidations.These findings further our understanding on the microscopic kinetics of metal nanocrystal oxidation and knowledge of energetic electrons promoting oxidation reaction.展开更多
文摘In the 1940s, KIRKENDALL showed that diffusion in binary solid solutions cannot be described by only one diffusion coefficient. Rather, one has to consider the diffusivity of both species. His findings changed the treatment of diffusion data and the theory of diffusion itself. A diffusion-based framework was successfully employed to explain the behaviour of the Kirkendall plane. Nonetheless, the complexity of a multiphase diffusion zone and the morphological evolution during interdiffusion requires a physico-chemical approach. The interactions in binary and more complex systems are key issues from both the fundamental and technological points of view. This paper reviews the Kirkendall effect from the circumstances of its discovery to recent developments in its understanding, with broad applicability in materials science and engineering.
基金supported by the National Natural Science Foundation of China(11227403,11327901,51472215,51222202)the National Basic Research Program of China(2014CB932500,2015CB921004)+1 种基金Cyrus Tang Center for Sensor Materials and Applicationsthe resources of the Center of Electron Microscopy of Zhejiang University(ZJU)
文摘The dynamics of oxidation of cobalt nanoparticles were directly revealed by in situ environmental transmission electron microscopy.Firstly,cobalt nanoparticles were oxidized to polycrystalline cobalt monoxide,then to polycrystalline tricobalt tetroxide,in the presence of oxygen with a low partial pressure.Numerous cavities(or voids) were formed during the oxidation,owing to the Kirkendall effect.Analysis of the oxides growth suggested that the oxidation of cobalt nanoparticles followed a parabolic rate law,which was consistent with diffusion-limited kinetics.In situ transmission electron microscopy allowed potential atomic oxidation pathways to be considered.The outward diffusion of cobalt atoms inside the oxide layer controlled the oxidation,and formed the hollow structure.Irradiation by the electron beam,which destroyed the sealing effect of graphite layer coated on the cobalt surface and resulted in fast oxidation rate,played an important role in activating and promoting the oxidations.These findings further our understanding on the microscopic kinetics of metal nanocrystal oxidation and knowledge of energetic electrons promoting oxidation reaction.