Ta/NiO/NiFe/Ta multilayers were prepared by rf reactive and dc magnetron sputtering. The exchange coupling field (Hex) between NiO and NiFe reached 120O e. The composition and chemical states at the interface region o...Ta/NiO/NiFe/Ta multilayers were prepared by rf reactive and dc magnetron sputtering. The exchange coupling field (Hex) between NiO and NiFe reached 120O e. The composition and chemical states at the interface region of NiO/NiFe were studied using the X-ray photoelectron spectroscopy (XPS) and peak decomposition technique. The results show that there are two thermodynamically favorable reactions at NiO/NiFe interface: NiO+Fe=Ni+FeO and 3NiO+2Fe=3Ni+Fe2O3. The thickness of the chemical reaction as estimated by angle-resolved XPS was about 1-1.5 nm. These interface reaction products are magnetic defects, and we believe that the Hex and the coercivity (Hc) of NiO/NiFe are affected by these defects. Moreover, the results also show that there is an intermixing layer at the Ta/NiO (and NiO/Ta) interface due to a thermodynamically favorable reaction: 2Ta+5NiO+Ta2O5. This interface reaction has an effect on the exchange coupling as well. The thickness of the intermixing layer as estimated by XPS depth-profiles was about 8-10 nm.展开更多
Adsorption is one of the most widely applied techniques for environmental remediation. Its kinetics are of great significance to evaluate the performance of a given adsorbent and gain insight into the underlying mecha...Adsorption is one of the most widely applied techniques for environmental remediation. Its kinetics are of great significance to evaluate the performance of a given adsorbent and gain insight into the underlying mechanisms. There are lots of references available concerning adsorption kinetics, and several mathematic models have been developed to describe adsorption reaction and diffusion processes. However, these models were frequently employed to fit the kinetic data in an unsuitable or improper manner. This is mainly because the boundary conditions of the associated models were, to a considerable extent, ignored for data modeling. Here we reviewed several widely-used adsorption kinetic models and paid more attention to their boundary conditions. We believe that the review is of certain significance and improvement for adsorption kinetic modeling.展开更多
基金supported by the National Natural Science Foundation of China and Beijing under grant No.19890310 and 2012011,respectively
文摘Ta/NiO/NiFe/Ta multilayers were prepared by rf reactive and dc magnetron sputtering. The exchange coupling field (Hex) between NiO and NiFe reached 120O e. The composition and chemical states at the interface region of NiO/NiFe were studied using the X-ray photoelectron spectroscopy (XPS) and peak decomposition technique. The results show that there are two thermodynamically favorable reactions at NiO/NiFe interface: NiO+Fe=Ni+FeO and 3NiO+2Fe=3Ni+Fe2O3. The thickness of the chemical reaction as estimated by angle-resolved XPS was about 1-1.5 nm. These interface reaction products are magnetic defects, and we believe that the Hex and the coercivity (Hc) of NiO/NiFe are affected by these defects. Moreover, the results also show that there is an intermixing layer at the Ta/NiO (and NiO/Ta) interface due to a thermodynamically favorable reaction: 2Ta+5NiO+Ta2O5. This interface reaction has an effect on the exchange coupling as well. The thickness of the intermixing layer as estimated by XPS depth-profiles was about 8-10 nm.
基金supported by the National Natural Science Foundation of China (No. 20504012)the New Century Excellent Talents in University of China (No. NCET-07-0421)
文摘Adsorption is one of the most widely applied techniques for environmental remediation. Its kinetics are of great significance to evaluate the performance of a given adsorbent and gain insight into the underlying mechanisms. There are lots of references available concerning adsorption kinetics, and several mathematic models have been developed to describe adsorption reaction and diffusion processes. However, these models were frequently employed to fit the kinetic data in an unsuitable or improper manner. This is mainly because the boundary conditions of the associated models were, to a considerable extent, ignored for data modeling. Here we reviewed several widely-used adsorption kinetic models and paid more attention to their boundary conditions. We believe that the review is of certain significance and improvement for adsorption kinetic modeling.