Key-value (KV) stores have become a backbone of large-scale applications in today's data centers. Write- optimized data structures like the Log-Structured Merge-tree (LSM-tree) and their variants are widely used ...Key-value (KV) stores have become a backbone of large-scale applications in today's data centers. Write- optimized data structures like the Log-Structured Merge-tree (LSM-tree) and their variants are widely used in KV storage systems like BigTable and RocksDB. Conventional LSM-tree organizes KV items into multiple, successively larger components, and uses compaction to push KV items from one smaller component to another adjacent larger component until the KV items reach the largest component. Unfortunately, current compaction scheme incurs significant write amplification due to repeated KV item reads and writes, and then results in poor throughput. We propose a new compaction scheme, delayed compaction (dCompaction) that decreases write amplification, dCompaction postpones some compactions and gathers them into the following compaction. In this way, it avoids KV item reads and writes during compaction, and consequently improves the throughput of LSM-tree based KV stores. We implement dCompaction on RocksDB, and conduct extensive experiments. Validation using YCSB framework shows that compared with RocksDB, dCompaction has about 40% write performance improvements and also comparable read performance.展开更多
In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.Howev...In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.However,our comprehensive review of existing literature reveals that there needs to be more studies that engage with key-value data collection.Such studies would simultaneously collect the frequencies of keys and the mean of values associated with each key.Additionally,the allocation of the privacy budget between the frequencies of keys and the means of values for each key does not yield an optimal utility tradeoff.Recognizing the importance of obtaining accurate key frequencies and mean estimations for key-value data collection,this paper presents a novel framework:the Key-Strategy Framework forKey-ValueDataCollection under LDP.Initially,theKey-StrategyUnary Encoding(KS-UE)strategy is proposed within non-interactive frameworks for the purpose of privacy budget allocation to achieve precise key frequencies;subsequently,the Key-Strategy Generalized Randomized Response(KS-GRR)strategy is introduced for interactive frameworks to enhance the efficiency of collecting frequent keys through group-anditeration methods.Both strategies are adapted for scenarios in which users possess either a single or multiple key-value pairs.Theoretically,we demonstrate that the variance of KS-UE is lower than that of existing methods.These claims are substantiated through extensive experimental evaluation on real-world datasets,confirming the effectiveness and efficiency of the KS-UE and KS-GRR strategies.展开更多
Big data processing is becoming a standout part of data center computation. However, latest research has indicated that big data workloads cannot make full use of modern memory systems. We find that the dramatic ineff...Big data processing is becoming a standout part of data center computation. However, latest research has indicated that big data workloads cannot make full use of modern memory systems. We find that the dramatic inefficiency of the big data processing is from the enormous amount of cache misses and stalls of the depended memory accesses. In this paper, we introduce two optimizations to tackle these problems. The first one is the slice-and-merge strategy, which reduces the cache miss rate of the sort procedure. The second optimization is direct-memory-access, which reforms the data structure used in key/value storage. These optimizations are evaluated with both micro-benchmarks and the real-world benchmark HiBench. The results of our micro-benchmarks clearly demonstrate the effectiveness of our optimizations in terms of hardware event counts; and the additional results of HiBench show the 1.21X average speedup on the application-level. Both results illustrate that careful hardware/software co-design will improve the memory efficiency of big data processing. Our work has already been integrated into Intel distribution for Apache Hadoop.展开更多
Memory-based key-value cache systems, such as Memcached and Redis, have become indispensable components of data center infrastructures and have been used to cache performance-critical data to avoid expensive back-end ...Memory-based key-value cache systems, such as Memcached and Redis, have become indispensable components of data center infrastructures and have been used to cache performance-critical data to avoid expensive back-end database accesses. As the memory is usually not large enough to hold all the items, cache replacement must be performed to evict some cached items to make room for the newly coming items when there is no free space. Many real-world workloads target small items and have frequent bursts of scans (a scan is a sequence of one-time access requests). The commonly used LRU policy does not work well under such workloads since LRU needs a large amount of metadata and tends to discard hot items with scans. Small decreases in hit ratio can result in large end-to-end losses in these systems. This paper presents MemSC, which is a scan-resistant and compact cache replacement framework for Memcached. MemSC assigns a multi-granularity reference flag for each item, which requires only a few bits (two bits are enough for general use) per item to support scanresistant cache replacement policies. To evaluate MemSC, we implement three representative cache replacement policies (MemSC-HM, MemSC-LH, and MemSC-LF) on MemSC and test them using various workloads. The experimental results show that MemSC outperforms prior techniques. Compared with the optimized LRU policy in Memcached, MemSC-LH reduces the cache miss ratio and the memory usage of the resulting system by up to 23% and 14% respectively.展开更多
With the explosive increase in mobile apps, more and more threats migrate from traditional PC client to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile Int...With the explosive increase in mobile apps, more and more threats migrate from traditional PC client to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile Internet, the apps replace the PC client software as the major target of malicious usage. In this paper, to improve the security status of current mobile apps, we propose a methodology to evaluate mobile apps based on cloud computing platform and data mining. We also present a prototype system named MobSafe to identify the mobile app's virulence or benignancy. Compared with traditional method, such as permission pattern based method, MobSafe combines the dynamic and static analysis methods to comprehensively evaluate an Android app. In the implementation, we adopt Android Security Evaluation Framework (ASEF) and Static Android Analysis Framework (SAAF), the two representative dynamic and static analysis methods, to evaluate the Android apps and estimate the total time needed to evaluate all the apps stored in one mobile app market. Based on the real trace from a commercial mobile app market called AppChina, we can collect the statistics of the number of active Android apps, the average number apps installed in one Android device, and the expanding ratio of mobile apps. As mobile app market serves as the main line of defence against mobile malwares, our evaluation results show that it is practical to use cloud computing platform and data mining to verify all stored apps routinely to filter out malware apps from mobile app markets. As the future work, MobSafe can extensively use machine learning to conduct automotive forensic analysis of mobile apps based on the generated multifaceted data in this stage.展开更多
基金This work is supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000202 and the National Natural Science Foundation of China under Grant Nos. 61303056 and 61379042.
文摘Key-value (KV) stores have become a backbone of large-scale applications in today's data centers. Write- optimized data structures like the Log-Structured Merge-tree (LSM-tree) and their variants are widely used in KV storage systems like BigTable and RocksDB. Conventional LSM-tree organizes KV items into multiple, successively larger components, and uses compaction to push KV items from one smaller component to another adjacent larger component until the KV items reach the largest component. Unfortunately, current compaction scheme incurs significant write amplification due to repeated KV item reads and writes, and then results in poor throughput. We propose a new compaction scheme, delayed compaction (dCompaction) that decreases write amplification, dCompaction postpones some compactions and gathers them into the following compaction. In this way, it avoids KV item reads and writes during compaction, and consequently improves the throughput of LSM-tree based KV stores. We implement dCompaction on RocksDB, and conduct extensive experiments. Validation using YCSB framework shows that compared with RocksDB, dCompaction has about 40% write performance improvements and also comparable read performance.
基金supported by a grant fromthe National Key R&DProgram of China.
文摘In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.However,our comprehensive review of existing literature reveals that there needs to be more studies that engage with key-value data collection.Such studies would simultaneously collect the frequencies of keys and the mean of values associated with each key.Additionally,the allocation of the privacy budget between the frequencies of keys and the means of values for each key does not yield an optimal utility tradeoff.Recognizing the importance of obtaining accurate key frequencies and mean estimations for key-value data collection,this paper presents a novel framework:the Key-Strategy Framework forKey-ValueDataCollection under LDP.Initially,theKey-StrategyUnary Encoding(KS-UE)strategy is proposed within non-interactive frameworks for the purpose of privacy budget allocation to achieve precise key frequencies;subsequently,the Key-Strategy Generalized Randomized Response(KS-GRR)strategy is introduced for interactive frameworks to enhance the efficiency of collecting frequent keys through group-anditeration methods.Both strategies are adapted for scenarios in which users possess either a single or multiple key-value pairs.Theoretically,we demonstrate that the variance of KS-UE is lower than that of existing methods.These claims are substantiated through extensive experimental evaluation on real-world datasets,confirming the effectiveness and efficiency of the KS-UE and KS-GRR strategies.
文摘Big data processing is becoming a standout part of data center computation. However, latest research has indicated that big data workloads cannot make full use of modern memory systems. We find that the dramatic inefficiency of the big data processing is from the enormous amount of cache misses and stalls of the depended memory accesses. In this paper, we introduce two optimizations to tackle these problems. The first one is the slice-and-merge strategy, which reduces the cache miss rate of the sort procedure. The second optimization is direct-memory-access, which reforms the data structure used in key/value storage. These optimizations are evaluated with both micro-benchmarks and the real-world benchmark HiBench. The results of our micro-benchmarks clearly demonstrate the effectiveness of our optimizations in terms of hardware event counts; and the additional results of HiBench show the 1.21X average speedup on the application-level. Both results illustrate that careful hardware/software co-design will improve the memory efficiency of big data processing. Our work has already been integrated into Intel distribution for Apache Hadoop.
文摘Memory-based key-value cache systems, such as Memcached and Redis, have become indispensable components of data center infrastructures and have been used to cache performance-critical data to avoid expensive back-end database accesses. As the memory is usually not large enough to hold all the items, cache replacement must be performed to evict some cached items to make room for the newly coming items when there is no free space. Many real-world workloads target small items and have frequent bursts of scans (a scan is a sequence of one-time access requests). The commonly used LRU policy does not work well under such workloads since LRU needs a large amount of metadata and tends to discard hot items with scans. Small decreases in hit ratio can result in large end-to-end losses in these systems. This paper presents MemSC, which is a scan-resistant and compact cache replacement framework for Memcached. MemSC assigns a multi-granularity reference flag for each item, which requires only a few bits (two bits are enough for general use) per item to support scanresistant cache replacement policies. To evaluate MemSC, we implement three representative cache replacement policies (MemSC-HM, MemSC-LH, and MemSC-LF) on MemSC and test them using various workloads. The experimental results show that MemSC outperforms prior techniques. Compared with the optimized LRU policy in Memcached, MemSC-LH reduces the cache miss ratio and the memory usage of the resulting system by up to 23% and 14% respectively.
基金the National Key Basic Research and Development (973) Program of China (Nos. 2012CB315801 and 2011CB302805)the National Natural Science Foundation of China (Nos. 61161140320 and 61233016)Intel Research Council with the title of Security Vulnerability Analysis based on Cloud Platform with Intel IA Architecture
文摘With the explosive increase in mobile apps, more and more threats migrate from traditional PC client to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile Internet, the apps replace the PC client software as the major target of malicious usage. In this paper, to improve the security status of current mobile apps, we propose a methodology to evaluate mobile apps based on cloud computing platform and data mining. We also present a prototype system named MobSafe to identify the mobile app's virulence or benignancy. Compared with traditional method, such as permission pattern based method, MobSafe combines the dynamic and static analysis methods to comprehensively evaluate an Android app. In the implementation, we adopt Android Security Evaluation Framework (ASEF) and Static Android Analysis Framework (SAAF), the two representative dynamic and static analysis methods, to evaluate the Android apps and estimate the total time needed to evaluate all the apps stored in one mobile app market. Based on the real trace from a commercial mobile app market called AppChina, we can collect the statistics of the number of active Android apps, the average number apps installed in one Android device, and the expanding ratio of mobile apps. As mobile app market serves as the main line of defence against mobile malwares, our evaluation results show that it is practical to use cloud computing platform and data mining to verify all stored apps routinely to filter out malware apps from mobile app markets. As the future work, MobSafe can extensively use machine learning to conduct automotive forensic analysis of mobile apps based on the generated multifaceted data in this stage.