期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于盒注意力机制和Transformer的人脸微表情识别方法
1
作者 唐梦瑶 黄江涛 《人工智能科学与工程》 2023年第9期57-67,共11页
微表情是一种细微的能够体现人真实心理活动的面部运动,通常与真实情感直接相关,应用前景广阔。但由于微表情持续时间短暂、表情幅度低和特征难以提取等特点,因此其识别准确率较低。针对该问题,提出了基于盒注意力机制和Transformer的... 微表情是一种细微的能够体现人真实心理活动的面部运动,通常与真实情感直接相关,应用前景广阔。但由于微表情持续时间短暂、表情幅度低和特征难以提取等特点,因此其识别准确率较低。针对该问题,提出了基于盒注意力机制和Transformer的人脸微表情识别模型(visiontransformerbasedonbox-attention,ViT-Box)。该模型首先对人脸面部进行特征提取,利用盒注意力机制获得自适应的面部微表情关键区域:左眉眼、右眉眼和嘴巴;然后对非关键区域进行掩码遮盖,避免微表情无关信息干扰;最后基于VisionTransformer网络实现人脸微表情识别。ViT-Box模型在微宏表情仓库(MMEW)数据集上取得了98.68%的平均准确率,实验结果表明该模型在微表情识别上能够获得优秀的识别效果。同时通过消融实验验证了ViT-Box模型的有效性。 展开更多
关键词 微表情识别 盒注意力机制 目标检测 视觉Transformer 关键区域提取 人脸掩码 YOLOv5模型 多层感知机
下载PDF
基于关键区域的二值化场景特征快速提取方法 被引量:3
2
作者 姚萌 贾克斌 萧允治 《计算机工程与应用》 CSCD 北大核心 2018年第6期14-18,61,共6页
近年来,驾驶辅助系统中基于视频信息的车辆定位技术受到广泛关注。针对轻轨系统高精度场景匹配中场景相似度过高导致定位困难的问题,提出了一种关键区域及二值化特征提取方法。该方法以离线处理的方式在高相似度的参考序列帧内提取具有... 近年来,驾驶辅助系统中基于视频信息的车辆定位技术受到广泛关注。针对轻轨系统高精度场景匹配中场景相似度过高导致定位困难的问题,提出了一种关键区域及二值化特征提取方法。该方法以离线处理的方式在高相似度的参考序列帧内提取具有显著性信息的关键区域,并在这些区域中生成二值化特征描述符以提高实时场景匹配的速度与准确率。在香港轻轨数据集以及公开的Nordland数据集中,相对于局部场景特征,基于提出的关键区域特征的场景匹配方法错误偏差下降31.43%,同时节约了94.22%的匹配时间;与Seq SLAM场景跟踪算法相比,在不显著增加运行时间的前提下,基于关键区域二值化场景特征的场景跟踪正确率提高了9.84%。实验结果表明,提出的关键区域以及二值化特征提取方法在降低了场景匹配计算时间的同时,提高了匹配精确度。 展开更多
关键词 快速场景匹配 关键区域提取 二值化特征提取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部