针对定性符号有向图(signed directed graph,SDG)在化工过程系统中建模复杂度高、故障分辨率低、容易忽略部分变量等问题,提出一种基于复杂网络理论构建层次SDG网络模型并识别关键节点的方法。首先利用层次分析法对化工过程系统划分递...针对定性符号有向图(signed directed graph,SDG)在化工过程系统中建模复杂度高、故障分辨率低、容易忽略部分变量等问题,提出一种基于复杂网络理论构建层次SDG网络模型并识别关键节点的方法。首先利用层次分析法对化工过程系统划分递阶层次结构,建立基于子系统的系统SDG网络模型,选取度中心性、接近中心性等多个节点重要性评价指标,采用主成分分析法确定各指标权重并利用逼近理想排序法(technique for order preference by similarity to an ideal solution,TOPSIS)多属性决策方法得到节点重要性的综合评价值,初步识别关键节点所在的子系统;然后建立子系统的SDG模型并细化为有向网络,采用Leader Rank算法对节点重要性进行排序,进而在子系统网络模型中确定关键节点的位置。案例计算结果表明该方法可以有效地降低建模的复杂性,提高关键节点识别的全面性和准确性,从而改善化工过程系统的安全稳定性。展开更多
文摘针对定性符号有向图(signed directed graph,SDG)在化工过程系统中建模复杂度高、故障分辨率低、容易忽略部分变量等问题,提出一种基于复杂网络理论构建层次SDG网络模型并识别关键节点的方法。首先利用层次分析法对化工过程系统划分递阶层次结构,建立基于子系统的系统SDG网络模型,选取度中心性、接近中心性等多个节点重要性评价指标,采用主成分分析法确定各指标权重并利用逼近理想排序法(technique for order preference by similarity to an ideal solution,TOPSIS)多属性决策方法得到节点重要性的综合评价值,初步识别关键节点所在的子系统;然后建立子系统的SDG模型并细化为有向网络,采用Leader Rank算法对节点重要性进行排序,进而在子系统网络模型中确定关键节点的位置。案例计算结果表明该方法可以有效地降低建模的复杂性,提高关键节点识别的全面性和准确性,从而改善化工过程系统的安全稳定性。