Abstract The karyomorphology of three species in Dipentodon (Dipentodontaceae), Perrottetia (Celastraceae), and Tapiscia (Tapisciaceae), namely Dipentodon sinicus, Perrottetia racemosa, and Tapiscia sinensis, wa...Abstract The karyomorphology of three species in Dipentodon (Dipentodontaceae), Perrottetia (Celastraceae), and Tapiscia (Tapisciaceae), namely Dipentodon sinicus, Perrottetia racemosa, and Tapiscia sinensis, was investigated in the present study. Recent molecular research has discovered close relationships among these three genera, which has led to the establishment of the order Huerteales with Perrottetia being placed in Dipentodontaceae. Herein we report the chromosome numbers of D. sinicus and P. racemosa for the first time, and present their karyotype formulas as 2n = 34 = 22 sm + 12 st (D. sinicus), 2n = 20 = 11 m + 9 sm (P. racemosa), and 2n = 30 = 22 m(2SAT) + 8sm (T. sinensis). Asymmetry of their karyotypes is categorized to be Type 3B in D. sinicus, Type 2A in P. racemosa, and Type 2A in T. sinensis. Each of the species shows special cytological features. Compared with Perrottetia, Dipentodon has a different basic chromosome number, a higher karyotype asymmetry, and different karyomorphology of its interphase nuclei, mitotic prophase, and metaphase. Thus, on the basis of these results, we have reservations regarding the suggestion of placing Dipentodon and Perrottetia together in the family Dipentodontaceae.展开更多
基金This work was supported by the National Natural Science Foundation of China(39630030)the Key Project Grants of Natural Resources and Environment of the Chinese Academy of Sciences.
基金provided by the Knowledge Innovation Project of Kunming Institute of Botany(grant no.54O7064713K1)
文摘Abstract The karyomorphology of three species in Dipentodon (Dipentodontaceae), Perrottetia (Celastraceae), and Tapiscia (Tapisciaceae), namely Dipentodon sinicus, Perrottetia racemosa, and Tapiscia sinensis, was investigated in the present study. Recent molecular research has discovered close relationships among these three genera, which has led to the establishment of the order Huerteales with Perrottetia being placed in Dipentodontaceae. Herein we report the chromosome numbers of D. sinicus and P. racemosa for the first time, and present their karyotype formulas as 2n = 34 = 22 sm + 12 st (D. sinicus), 2n = 20 = 11 m + 9 sm (P. racemosa), and 2n = 30 = 22 m(2SAT) + 8sm (T. sinensis). Asymmetry of their karyotypes is categorized to be Type 3B in D. sinicus, Type 2A in P. racemosa, and Type 2A in T. sinensis. Each of the species shows special cytological features. Compared with Perrottetia, Dipentodon has a different basic chromosome number, a higher karyotype asymmetry, and different karyomorphology of its interphase nuclei, mitotic prophase, and metaphase. Thus, on the basis of these results, we have reservations regarding the suggestion of placing Dipentodon and Perrottetia together in the family Dipentodontaceae.