Kaolinite is a kind of clay mineral which often causes large deformations in soft-rock tunnel engineering and thus causes safety issues. To deal with these engineering safety issues, the physical/chemical properties o...Kaolinite is a kind of clay mineral which often causes large deformations in soft-rock tunnel engineering and thus causes safety issues. To deal with these engineering safety issues, the physical/chemical properties of the kaolinite should be studied from basic viewpoints. By using the density-functional theory, in this paper, the atomic and the electronic structures of the kaolinite are studied within the local-density approximation (LDA). It is found that the kaolinite has a large indirect band gap with the conduction band minimum (CBM) and the valence band maximum (VBM) being at the F and the B points, respectively. The chemical bonding between the cation and the oxygen anion in kaolinite is mainly ionic, accompanied by a minor covalent component. It is pointed that the VBM and the CBM of kaolinite consist of oxygen 2p and cation s states, respectively. The bond lengths between different cations and anions, as well as of the different OH groups, are also compared.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 40972196)
文摘Kaolinite is a kind of clay mineral which often causes large deformations in soft-rock tunnel engineering and thus causes safety issues. To deal with these engineering safety issues, the physical/chemical properties of the kaolinite should be studied from basic viewpoints. By using the density-functional theory, in this paper, the atomic and the electronic structures of the kaolinite are studied within the local-density approximation (LDA). It is found that the kaolinite has a large indirect band gap with the conduction band minimum (CBM) and the valence band maximum (VBM) being at the F and the B points, respectively. The chemical bonding between the cation and the oxygen anion in kaolinite is mainly ionic, accompanied by a minor covalent component. It is pointed that the VBM and the CBM of kaolinite consist of oxygen 2p and cation s states, respectively. The bond lengths between different cations and anions, as well as of the different OH groups, are also compared.