期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
基于K-prototypes的混合属性数据聚类算法 被引量:16
1
作者 陈韡 王雷 蒋子云 《计算机应用》 CSCD 北大核心 2010年第8期2003-2005,2110,共4页
通过对基于K-prototypes算法对混合属性数据处理的聚类问题进行研究,改进了K-prototypes算法中分类属性相异度计算公式,使之能更加精确反映样本间的差异;在此基础上提出了一种用于处理混合属性数据的聚类算法,并将改进后的算法应用于英... 通过对基于K-prototypes算法对混合属性数据处理的聚类问题进行研究,改进了K-prototypes算法中分类属性相异度计算公式,使之能更加精确反映样本间的差异;在此基础上提出了一种用于处理混合属性数据的聚类算法,并将改进后的算法应用于英语借词数据的聚类分析中。实验结果表明,与K-prototypes算法相比,改进后的算法具有更好的稳定性和更高的精度。 展开更多
关键词 聚类 k-prototypes算法 混合属性数据 相异度
下载PDF
一种基于划分的混合数据聚类算法 被引量:5
2
作者 常茜茜 张月琴 《计算机应用与软件》 CSCD 北大核心 2014年第6期154-157,共4页
在实际应用领域,常常存在同时包含数值型和分类型特征的混合数据。然而,已有的大多数聚类算法只能处理数值型或分类型单一类型数据,因此,提出一个基于划分的混合数据聚类算法。首先给出K-Prototypes算法中分类型数据类中心的多Modes表... 在实际应用领域,常常存在同时包含数值型和分类型特征的混合数据。然而,已有的大多数聚类算法只能处理数值型或分类型单一类型数据,因此,提出一个基于划分的混合数据聚类算法。首先给出K-Prototypes算法中分类型数据类中心的多Modes表示方式,进而将传统的欧式距离扩展到混合数据,使之能够在相同框架下更加精确地反映对象与类之间的相异性,在此基础上提出一个用于处理混合数据的划分式聚类算法。最后,在UCI数据集上的实验结果表明,与K-Prototypes算法相比,所提出的算法能够有效提高聚类质量。 展开更多
关键词 kprototypes算法 混合数据 划分聚类 相异性度量
下载PDF
支持K-近邻搜索的区块链泛用型数据隐私保护方法
3
作者 王胜 潘正高 董全德 《辽宁大学学报(自然科学版)》 CAS 2024年第2期147-157,共11页
随着区块链泛用型数据应用场景的不断扩大,其涉及的数据隐私越来越多,数据隐私泄露可能导致个人信用受损,带来财产损失甚至身份盗用等.合理高效地进行用户身份信息及数据隐私保护是确保区块链泛用型数据安全的关键问题.为此,本文提出了... 随着区块链泛用型数据应用场景的不断扩大,其涉及的数据隐私越来越多,数据隐私泄露可能导致个人信用受损,带来财产损失甚至身份盗用等.合理高效地进行用户身份信息及数据隐私保护是确保区块链泛用型数据安全的关键问题.为此,本文提出了支持K-近邻搜索的区块链泛用型数据隐私保护方法,采集区块链泛用型数据,利用k-prototypes算法,聚类区块链泛用型数据,并控制分类属性和数值属性.在此基础上,本文支持K-近邻搜索,建立区块链泛用型数据系统模型,确定区块链泛用型数据敏感区域,实现区块链泛用型数据隐私保护.实验结果表明,本文所提方法具有较好的区块链泛用型数据隐私保护效果,能够有效提高区块链泛用型数据隐私保护安全性,缩短区块链泛用型数据隐私保护时间. 展开更多
关键词 k-近邻搜索 区块链 泛用型数据 k-prototypes算法 数据隐私保护
下载PDF
改进的k-prototypes算法及应用 被引量:1
4
作者 罗冬梅 《武夷学院学报》 2009年第2期74-77,共4页
文中提出了一种改进的k-prototypes算法,该算法可以解决具有数值和分类混合类型数据的聚类问题,将它应用于对某高校网站的Web服务器日志进行数据分析,发现有意义的信息,建立规则库,并验证了算法的有效性。
关键词 数据挖掘 k-prototypes算法 k-MEANS算法 k-modes算法 WEB日志分析
下载PDF
一种基于信息熵的加权聚类算法 被引量:4
5
作者 李顺勇 崔文秀 荆鹏霏 《云南民族大学学报(自然科学版)》 CAS 2020年第6期568-576,共9页
混合型数据是数值型数据和分类型数据的结合,而真实数据集大部分是混合数据,因此混合型数据聚类问题得到越来越广泛地关注.主要工作包括:综合考虑类内熵及类间熵对权重的影响,给属性赋予新的权重,重新定义了寻找最坏类广义机制、有效性... 混合型数据是数值型数据和分类型数据的结合,而真实数据集大部分是混合数据,因此混合型数据聚类问题得到越来越广泛地关注.主要工作包括:综合考虑类内熵及类间熵对权重的影响,给属性赋予新的权重,重新定义了寻找最坏类广义机制、有效性指标、相异性度量.提出了1种基于信息熵的混合数据加权聚类算法.该算法在5个UCI数据集上比较了5个外部评价指标和1个内部评价指标,其结果均优于与其余两种算法(Liang-k-prototypes算法,Li-k-prototypes算法). 展开更多
关键词 k-prototypes算法 混合数据 信息熵 属性权重 有效性指标
下载PDF
基于平均差异度的改进k-prototypes聚类算法 被引量:4
6
作者 石鸿雁 徐明明 《沈阳工业大学学报》 EI CAS 北大核心 2019年第5期555-559,共5页
针对k-prototypes聚类算法随机选取初始聚类中心导致聚类结果不稳定,以及现有的大多数混合属性数据聚类算法聚类质量不高等问题,提出了基于平均差异度的改进k-prototypes聚类算法.通过利用平均差异度选取初始聚类中心,避免了初始聚类中... 针对k-prototypes聚类算法随机选取初始聚类中心导致聚类结果不稳定,以及现有的大多数混合属性数据聚类算法聚类质量不高等问题,提出了基于平均差异度的改进k-prototypes聚类算法.通过利用平均差异度选取初始聚类中心,避免了初始聚类中心点选取的随机性,同时利用信息熵确定数值数据的属性权重,并对分类属性度量公式进行改进,给出了一种混合属性数据度量公式.结果表明,改进后的算法具有较高的准确率,能够有效处理混合属性数据. 展开更多
关键词 k-prototypes算法 聚类 初始聚类中心 混合属性数据 平均差异度 信息熵 属性权重 度量公式
下载PDF
基于K-prototypes的混合属性数据聚类算法改进
7
作者 倪丹 李泽文 《科技创新与应用》 2024年第28期31-34,38,共5页
属性数据分为数值型数据和分类型数据,一般情况下对于数值型数据运算前要进行标准化处理,但是对于数值型数据差异大的数据,由于大数掩盖小数的影响,按照K-prototypes聚类算法,数值型数据标准化后而且不对相应的分类数据有任何预处理或... 属性数据分为数值型数据和分类型数据,一般情况下对于数值型数据运算前要进行标准化处理,但是对于数值型数据差异大的数据,由于大数掩盖小数的影响,按照K-prototypes聚类算法,数值型数据标准化后而且不对相应的分类数据有任何预处理或者在计算时没有进行任何改变,很可能提高分类数据在聚类中的影响,并且分类型数据并未进一步地细分,不能满足不同要求的混合属性聚类。该文在将数值型数据标准化的基础上,将分类数据细分为二元数据和类型数据,并用相异度系数距离计算分类数据之间的距离,并且赋予二元和类型数据相应的权重,来改进K-prototypes聚类算法,使该算法满足不同要求的混合属性数据聚类,最后通过C#语言,在ArcEngine2010版本上实现。 展开更多
关键词 k-prototypes算法 混合属性 类型数据 相异度系数 加权属性
下载PDF
粒子群与细菌觅食相结合的案例聚类算法 被引量:2
8
作者 胡爱策 任明仑 王浩 《计算机技术与发展》 2013年第10期44-47,共4页
案例聚类是按照案例库中案例的相似度进行归类,目的是减少案例推理系统搜索相似案例的时间、提高案例推理系统的性能和降低案例库维护的复杂度。该问题的难度在于案例库的案例规模比较大和不同的聚类算法的选择对于聚类结果的影响。文... 案例聚类是按照案例库中案例的相似度进行归类,目的是减少案例推理系统搜索相似案例的时间、提高案例推理系统的性能和降低案例库维护的复杂度。该问题的难度在于案例库的案例规模比较大和不同的聚类算法的选择对于聚类结果的影响。文中在粒子群算法与细菌觅食算法基础上,将两者结合起来,综合两个算法的优点,并将其应用在k-prototypes方法上对案例库中案例进行聚类。与流行的聚类算法进行比较,实验结果显示文中的算法具有更高的效率并且性能相对而言更加优秀。 展开更多
关键词 案例库 粒子群算法 细菌觅食算法 kprototypes算法
下载PDF
航迹规划策略学习方法研究 被引量:2
9
作者 曹家敏 付琦玮 +2 位作者 周丘实 秦筱楲 蔡超 《计算机工程》 CAS CSCD 北大核心 2020年第5期282-290,297,共10页
分析并研究航迹规划软件中的飞行器操作数据特征,提出一种基于XGBoost算法和K-prototypes算法的航迹规划策略学习方法。在样本采集与分类过程中,根据约束自身特性和规划人员操作特征,将约束分为飞行器环境约束和飞行器特性相关约束,分... 分析并研究航迹规划软件中的飞行器操作数据特征,提出一种基于XGBoost算法和K-prototypes算法的航迹规划策略学习方法。在样本采集与分类过程中,根据约束自身特性和规划人员操作特征,将约束分为飞行器环境约束和飞行器特性相关约束,分别采用XGBoost算法和K-prototypes算法进行策略学习,并对飞行器特性相关约束做进一步细分,实现复杂约束的针对性学习及样本分类管理。当航迹不满足约束时,需将已获得的规划策略反馈给规划人员使其得到策略引导。实验结果表明,该方法能准确选取航迹规划策略并给出策略引导信息,降低规划人员的工作强度,提升交互规划效率和规划软件的智能性。 展开更多
关键词 规划策略 策略学习 样本分类 XGBoost算法 k-prototypes算法
下载PDF
一种面向于混合属性数据的聚类改进算法及其在客户细分中的应用 被引量:2
10
作者 赵俊杰 王平 《南昌大学学报(工科版)》 CAS 2017年第3期284-288,共5页
K-prototypes算法只适合处理对称标称型数据、序数型数据和区间型数据,对于用户兴趣等非对称型数据之间的相异度计算,如果采用对称标称型数据间的计算方法,则误差较大,而且设定的分类属性权重调整系数不容易确定。在考虑多种属性数据特... K-prototypes算法只适合处理对称标称型数据、序数型数据和区间型数据,对于用户兴趣等非对称型数据之间的相异度计算,如果采用对称标称型数据间的计算方法,则误差较大,而且设定的分类属性权重调整系数不容易确定。在考虑多种属性数据特征的基础上,对K-prototypes算法加以改进,提出一种简单的各类属性权重系数计算方法,即按属性比例初步计算各类属性权重,并分别配以微调系数进一步微调。同时扩展其算法,使其可以更好地处理非对称标称型数据,提升聚类效果。最后在实际的客户细分应用中验证其有效性。 展开更多
关键词 混合属性 k-prototypes算法 客户细分 非对称标称型属性 用户兴趣
下载PDF
基于K-Prototypes聚类算法的股票分析师行为划分
11
作者 张晓妹 胡殿凯 《计算机科学与应用》 2018年第6期894-901,共8页
股票分析师作为信息中介,通过发布研报的形式提供股票内在投资价值的信息,其行为越发受到广大投资者的关注。由于股票分析师数量众多、研报风格迥异、质量良莠不齐,投资者缺乏相关知识经验难以去选择适合自身偏好的分析师研报。本文利用... 股票分析师作为信息中介,通过发布研报的形式提供股票内在投资价值的信息,其行为越发受到广大投资者的关注。由于股票分析师数量众多、研报风格迥异、质量良莠不齐,投资者缺乏相关知识经验难以去选择适合自身偏好的分析师研报。本文利用K-prototypes聚类算法分析具有混合属性的股票分析师行为数据,解决了股票分析师群体数据量大且分散的特性。通过刻画不同股票分析师群体的特征,帮助投资者了解分析师群体获取更多有价值的数据信息,进行理性投资降低投资风险,同时其结果为后续的多元分析提供数据基础。 展开更多
关键词 聚类 k-prototypes算法 股票分析师 研究报告
下载PDF
基于改进k-prototypes算法的Web日志分析系统的设计与实现
12
作者 罗冬梅 《吉林工程技术师范学院学报》 2015年第5期93-96,共4页
设计了一个基于改进k-prototypes算法的Web日志分析系统,结合学校网站采集的数据针对相关技术算法进行了应用及分析。
关键词 数据挖掘 WEB日志 k-prototypes算法
下载PDF
一种与k-prototypes混合的蚁群聚类算法的浅探
13
作者 于妍 《数字技术与应用》 2010年第11期77-77,79,共2页
本文介于k-prototypes和蚁群聚类算法的优、缺点,将两种算法进行改进后,交替使用,相互弥补、扬长避短,形成一种全新的算法,既缩短了聚类时间也能形成高效的聚类结果。
关键词 蚁群聚类算法 k-prototypes算法
下载PDF
基于改进RBF神经网络的银行个人信用评级 被引量:11
14
作者 蓝润荣 程希骏 《中国科学院研究生院学报》 CAS CSCD 北大核心 2013年第3期298-303,共6页
研究RBF神经网络在个人信用评级中的应用.针对传统的RBF神经网络无法处理非数值型数据和对初始中心的选取及异常值十分敏感等问题,提出一种基于模糊K-Prototypes算法的RBF神经网络,提高了处理分类型数据及混合型数据的能力,并且改进的模... 研究RBF神经网络在个人信用评级中的应用.针对传统的RBF神经网络无法处理非数值型数据和对初始中心的选取及异常值十分敏感等问题,提出一种基于模糊K-Prototypes算法的RBF神经网络,提高了处理分类型数据及混合型数据的能力,并且改进的模糊K-Prototypes算法有助于降低模型对初始中心选取和异常值的敏感性.将改进前后的模型分别应用于商业银行的个人信贷评级中,结果表明,改进后的模型预测精度和稳健性都优于传统的RBF模型. 展开更多
关键词 RBF神经网络 模糊k-prototypes算法 分类型数据 信用评级
下载PDF
量子遗传算法的模糊K-prototypes聚类 被引量:1
15
作者 叶奇明 梁根 《计算机工程与应用》 CSCD 北大核心 2010年第1期112-115,共4页
聚类分析是数据挖掘中应用最多的一种技术,它在许多领域都有重要应用。模糊h-prototypes算法是当前聚类分析中最有效算法之一,但是存在对初始值敏感、容易陷入局部极小值的问题。为了克服该缺点,提出了一种基于量子遗传算法和FKP算法的... 聚类分析是数据挖掘中应用最多的一种技术,它在许多领域都有重要应用。模糊h-prototypes算法是当前聚类分析中最有效算法之一,但是存在对初始值敏感、容易陷入局部极小值的问题。为了克服该缺点,提出了一种基于量子遗传算法和FKP算法的混合聚类算法,首先利用量子遗传算法确定FKP的初始聚类中心,再将量子遗传算法聚类结果作为后续FKP算法的初始值。实验结果显示,算法具有良好的收敛性和稳定性,聚类效果优于单一使用FKP算法和相关改进的算法。 展开更多
关键词 聚类算法 量子遗传算法 模糊k-prototypes算法 数值型属性 数据挖掘
下载PDF
基于信息增益的模糊K-prototypes聚类算法
16
作者 欧阳浩 王智文 +1 位作者 戴喜生 刘智琦 《计算机工程与科学》 CSCD 北大核心 2015年第5期1009-1014,共6页
K-prototypes聚类算法结合了K-means算法和K-modes算法,可用于分析混合属性的数据对象。传统的K-prototypes聚类算法在计算数据对象的相异度时,未考虑各个属性对于最终聚类结果的影响程度,而现实世界中,各属性的重要程度是不同的。使用... K-prototypes聚类算法结合了K-means算法和K-modes算法,可用于分析混合属性的数据对象。传统的K-prototypes聚类算法在计算数据对象的相异度时,未考虑各个属性对于最终聚类结果的影响程度,而现实世界中,各属性的重要程度是不同的。使用了信息论中信息增益的计算方法,来获得各个属性的权值。在计算各属性的差异度时,乘以这些权值,从而可以获得更为准确的聚类结果。为了增加算法处理模糊问题的能力,本算法引用了模糊理论,从而使其具有较好的抗干扰能力和处理不确定性问题的能力。通过对四个UCI数据集的聚类分析实验,表明了本算法的有效性。 展开更多
关键词 聚类 信息增益 模糊k-prototypes算法 混合型数据
下载PDF
改进的K-prototypes算法在农民工养老参保中的应用研究
17
作者 陆可 李鸣 +1 位作者 邹启鸣 徐浩 《管理观察》 2015年第28期189-192,共4页
农民工养老问题一直备受社会关注。许多学者对该问题展开了调研,并采用Logistic回归模型来分析调研结果。但是,Logistic回归模型要避免变量间的多元共线性。农民工养老保险参保调研数据各变量之间往往存在关联性,而且数据维度高。针对Lo... 农民工养老问题一直备受社会关注。许多学者对该问题展开了调研,并采用Logistic回归模型来分析调研结果。但是,Logistic回归模型要避免变量间的多元共线性。农民工养老保险参保调研数据各变量之间往往存在关联性,而且数据维度高。针对Logistic回归模型的局限性和调研数据维度高的问题,本文改进了K-prototypes聚类算法,并用于分析农民工未购买养老保险的原因。基于该方法得到的分析结果可以为相关部门制定针对性政策提供参考。 展开更多
关键词 聚类 改进的k-prototypes算法 农民工养老保险
下载PDF
数值型和分类型混合数据的模糊K-Prototypes聚类算法(英文) 被引量:47
18
作者 陈宁 陈安 周龙骧 《软件学报》 EI CSCD 北大核心 2001年第8期1107-1119,共13页
由于数据库经常同时包含数值型和分类型的属性 ,因此研究能够处理混合型数据的聚类算法无疑是很重要的 .讨论了混合型数据的聚类问题 ,提出了一种模糊 K- prototypes算法 .该算法融合了 K- means和 K- modes对数值型和分类型数据的处理... 由于数据库经常同时包含数值型和分类型的属性 ,因此研究能够处理混合型数据的聚类算法无疑是很重要的 .讨论了混合型数据的聚类问题 ,提出了一种模糊 K- prototypes算法 .该算法融合了 K- means和 K- modes对数值型和分类型数据的处理方法 ,能够处理混合类型的数据 .模糊技术体现聚类的边界特征 ,更适合处理含有噪声和缺失数据的数据库 .实验结果显示 。 展开更多
关键词 数据库 数值型混合数据 分类型混合数据 模糊k-prototypes聚类算法
下载PDF
模糊k-prototypes聚类算法的一种改进算法 被引量:11
19
作者 王宇 杨莉 《大连理工大学学报》 EI CAS CSCD 北大核心 2003年第6期849-852,共4页
模糊k-prototypes算法是当前聚类分析中最有效算法之一.简述了模糊k-prototypes算法的发展进程和主要性质;并在此基础上,指出它在处理数值型和分类型混合数据时的不足,进而提出一种改进算法;最后,将算法应用到英语借词之中,给出计算结果... 模糊k-prototypes算法是当前聚类分析中最有效算法之一.简述了模糊k-prototypes算法的发展进程和主要性质;并在此基础上,指出它在处理数值型和分类型混合数据时的不足,进而提出一种改进算法;最后,将算法应用到英语借词之中,给出计算结果.结果表明,改进算法具有较好的稳定性和较高的精确度. 展开更多
关键词 模糊k-prototypes聚类算法 数值型属性 分类型属性 英语借词 数据挖掘
下载PDF
异构并行计算下高维混合型数据聚类算法研究 被引量:2
20
作者 祝鹏 《现代电子技术》 北大核心 2024年第9期139-142,共4页
高维数据维度增加,数据空间的体积呈指数增长,容易陷入“维数灾难”,导致聚类算法执行效率低,为此,提出异构并行计算下高维混合型数据聚类算法。构建高维混合型数据相异度矩阵,提取高维混合型数据的统计序列特征值,利用时间窗口进行特... 高维数据维度增加,数据空间的体积呈指数增长,容易陷入“维数灾难”,导致聚类算法执行效率低,为此,提出异构并行计算下高维混合型数据聚类算法。构建高维混合型数据相异度矩阵,提取高维混合型数据的统计序列特征值,利用时间窗口进行特征优化。采用K⁃Prototypes聚类算法提取高维混合型数据的统计序列特征,评估数据与类中心的相异性,计算数据与类中心的欧氏距离,实现高维混合型数据聚类。采用异构并行计算技术进行高维混合型数据K⁃Prototypes聚类的并行化处理,合理分配CPU与GPU工作,达到CPU与GPU的工作负载平衡,提高K⁃Prototypes的聚类效率。实验结果表明,此算法对于高维混合型数据的聚类效果好、运行时间短、性能稳定。 展开更多
关键词 异构并行计算 高维混合型数据 kprototypes聚类算法 欧氏距离 统计序列特征 负载平衡
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部