中文文本分类在数据库及搜索引擎中得到广泛的应用,K-近邻(KNN)算法是常用于中文文本分类中的分类方法,但K-近邻在分类过程中需要存储所有的训练样本,并且直到待测样本需要分类时才建立分类,而且还存在类倾斜现象以及存储和计算的开销...中文文本分类在数据库及搜索引擎中得到广泛的应用,K-近邻(KNN)算法是常用于中文文本分类中的分类方法,但K-近邻在分类过程中需要存储所有的训练样本,并且直到待测样本需要分类时才建立分类,而且还存在类倾斜现象以及存储和计算的开销大等缺陷。单类SVM对只有一类的分类问题具有很好的效果,但不适用于多类分类问题,因此针对KNN存在的缺陷及单类SVM的特点提出One Class SVM-KNN算法,并给出了算法的定义及详细分析。通过实验证明此方法很好地克服了KNN算法的缺陷,并且查全率、查准率明显优于K-近邻算法。展开更多
文摘中文文本分类在数据库及搜索引擎中得到广泛的应用,K-近邻(KNN)算法是常用于中文文本分类中的分类方法,但K-近邻在分类过程中需要存储所有的训练样本,并且直到待测样本需要分类时才建立分类,而且还存在类倾斜现象以及存储和计算的开销大等缺陷。单类SVM对只有一类的分类问题具有很好的效果,但不适用于多类分类问题,因此针对KNN存在的缺陷及单类SVM的特点提出One Class SVM-KNN算法,并给出了算法的定义及详细分析。通过实验证明此方法很好地克服了KNN算法的缺陷,并且查全率、查准率明显优于K-近邻算法。
文摘实际生活中,经常会遇到大规模数据的分类问题,传统k-近邻k-NN(k-Nearest Neighbor)分类方法需要遍历整个训练样本集,因此分类效率较低,无法处理具有大规模训练集的分类任务。针对这个问题,提出一种基于聚类的加速k-NN分类方法 C_kNN(Speeding k-NN Classification Method Based on Clustering)。该方法首先对训练样本进行聚类,得到初始聚类结果,并计算每个类的聚类中心,选择与聚类中心相似度最高的训练样本构成新的训练样本集,然后针对每个测试样本,计算新训练样本集中与其相似度最高的k个样本,并选择该k个近邻样本中最多的类别标签作为该测试样本的预测模式类别。实验结果表明,C_k-NN分类方法在保持较高分类精度的同时大幅度提高模型的分类效率。