快速搜索与发现密度峰值聚类算法(Fast Search and Discovery Density Peak Clustering Algorithm,CFSFDP)的聚类效果十分依赖截断距离dc的主观选取,而最佳dc值的确定并不容易,并且当处理分布复杂、密度变化大的数据集时,算法生成的决...快速搜索与发现密度峰值聚类算法(Fast Search and Discovery Density Peak Clustering Algorithm,CFSFDP)的聚类效果十分依赖截断距离dc的主观选取,而最佳dc值的确定并不容易,并且当处理分布复杂、密度变化大的数据集时,算法生成的决策图中类簇中心点与非类簇中心点的区分不够明显,使类簇中心的选取变得困难。针对这些问题,对其算法进行了优化,并提出了基于K近邻的比较密度峰值聚类算法(Comparative Density Peak Clustering algorithm Based on K-Nearest Neighbors,CDPC-KNN)。算法结合K近邻概念重新定义了截断距离和局部密度的度量方法,对任意数据集能自适应地生成截断距离,并使局部密度的计算结果更符合数据的真实分布。同时在决策图中引入距离比较量代替原距离参数,使类簇中心在决策图上更加明显。通过实验验证,CDPC-KNN算法的聚类效果整体上优于CFSFDP算法与DBSCAN算法,分离度实验表明新算法使类簇中心与非类簇中心点的区分度得到有效提高。展开更多
图像特征匹配是基于内容的图像检索(Content-based image retrieval,CBIR)实现的一个关键环节,而图像特征的匹配主要依赖于图像特征之间的相似度测量。为了提高CBIR的检索性能,本文提出了一种有效的相似度测量方法——基于图像k近邻的...图像特征匹配是基于内容的图像检索(Content-based image retrieval,CBIR)实现的一个关键环节,而图像特征的匹配主要依赖于图像特征之间的相似度测量。为了提高CBIR的检索性能,本文提出了一种有效的相似度测量方法——基于图像k近邻的相似度测量(Similarity measure based on k-nearest neighbors of images,SBkNN)方法。在该方法中,查询图像与被检索图像的相似度通过计算这两幅图像属于同一语义(无论是哪种语义)种类的联合概率来衡量,而此概率可分别通过分析这两幅图像与各自近邻图像的距离得到。最后利用Corel5k数据集对本文所提出的SBkNN方法和传统的相似度测量方法进行了对比。实验结果表明,在CBIR中使用本文提出的SBkNN方法,有效地提高了CBIR的检索性能。展开更多
随着计算机技术和信息化的发展,人机交互在办公以及生活中显得越来越重要。由于手势具有灵活、直观、简单等优点,成为人机交互研究的重要领域。针对手势识别技术在自然人机交互中对时间和准确度要求较高的问题,提出一种新的手势识别算法...随着计算机技术和信息化的发展,人机交互在办公以及生活中显得越来越重要。由于手势具有灵活、直观、简单等优点,成为人机交互研究的重要领域。针对手势识别技术在自然人机交互中对时间和准确度要求较高的问题,提出一种新的手势识别算法(IDTW-K)。该算法对经典动态时间规整(Dynamic Time Warping,DTW)算法进行了改进。利用节点在运动序列中的距离方差对各个节点进行权值动态分配,并对DTW的搜索路径进行了详细的分析,采用点和线相结合的范围约束防止其搜索不合理以及优化DTW算法的计算速度,并结合KNN算法提高了手势识别效率。通过实验对IDTWK算法、改进的DTW算法和传统的DTW算法进行了对比,结果表明所提出的算法在精准度和识别速率上有一定的提高。展开更多
文摘快速搜索与发现密度峰值聚类算法(Fast Search and Discovery Density Peak Clustering Algorithm,CFSFDP)的聚类效果十分依赖截断距离dc的主观选取,而最佳dc值的确定并不容易,并且当处理分布复杂、密度变化大的数据集时,算法生成的决策图中类簇中心点与非类簇中心点的区分不够明显,使类簇中心的选取变得困难。针对这些问题,对其算法进行了优化,并提出了基于K近邻的比较密度峰值聚类算法(Comparative Density Peak Clustering algorithm Based on K-Nearest Neighbors,CDPC-KNN)。算法结合K近邻概念重新定义了截断距离和局部密度的度量方法,对任意数据集能自适应地生成截断距离,并使局部密度的计算结果更符合数据的真实分布。同时在决策图中引入距离比较量代替原距离参数,使类簇中心在决策图上更加明显。通过实验验证,CDPC-KNN算法的聚类效果整体上优于CFSFDP算法与DBSCAN算法,分离度实验表明新算法使类簇中心与非类簇中心点的区分度得到有效提高。
文摘图像特征匹配是基于内容的图像检索(Content-based image retrieval,CBIR)实现的一个关键环节,而图像特征的匹配主要依赖于图像特征之间的相似度测量。为了提高CBIR的检索性能,本文提出了一种有效的相似度测量方法——基于图像k近邻的相似度测量(Similarity measure based on k-nearest neighbors of images,SBkNN)方法。在该方法中,查询图像与被检索图像的相似度通过计算这两幅图像属于同一语义(无论是哪种语义)种类的联合概率来衡量,而此概率可分别通过分析这两幅图像与各自近邻图像的距离得到。最后利用Corel5k数据集对本文所提出的SBkNN方法和传统的相似度测量方法进行了对比。实验结果表明,在CBIR中使用本文提出的SBkNN方法,有效地提高了CBIR的检索性能。
文摘随着计算机技术和信息化的发展,人机交互在办公以及生活中显得越来越重要。由于手势具有灵活、直观、简单等优点,成为人机交互研究的重要领域。针对手势识别技术在自然人机交互中对时间和准确度要求较高的问题,提出一种新的手势识别算法(IDTW-K)。该算法对经典动态时间规整(Dynamic Time Warping,DTW)算法进行了改进。利用节点在运动序列中的距离方差对各个节点进行权值动态分配,并对DTW的搜索路径进行了详细的分析,采用点和线相结合的范围约束防止其搜索不合理以及优化DTW算法的计算速度,并结合KNN算法提高了手势识别效率。通过实验对IDTWK算法、改进的DTW算法和传统的DTW算法进行了对比,结果表明所提出的算法在精准度和识别速率上有一定的提高。