期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于多尺度信息熵的雷达辐射源信号识别 被引量:21
1
作者 黄颖坤 金炜东 +1 位作者 葛鹏 李冰 《电子与信息学报》 EI CSCD 北大核心 2019年第5期1084-1091,共8页
随着雷达信号的日益复杂,从实数序列中提取特征变得越来越困难,但当它们表示成符号序列时,通常能更容易地挖掘出有效的特征参数。因此,该文提出一种基于多尺度信息熵(MSIE)的雷达信号识别方法。首先通过符号聚合近似(SAX)算法在不同字... 随着雷达信号的日益复杂,从实数序列中提取特征变得越来越困难,但当它们表示成符号序列时,通常能更容易地挖掘出有效的特征参数。因此,该文提出一种基于多尺度信息熵(MSIE)的雷达信号识别方法。首先通过符号聚合近似(SAX)算法在不同字符集尺度下将雷达信号转换为符号化序列;然后联合各符号序列的信息熵值,组成MSIE特征向量;最后,使用k邻近算法(k-NN)作为分类器实现雷达信号的分类识别。通过仿真6种典型的雷达信号进行验证,结果表明该方法在信噪比(SNR)为5 dB时,不同雷达信号的识别正确率大于90%,并且优于传统的基于复杂度特征(盒维数和稀疏性)的识别方法。 展开更多
关键词 雷达信号识别 符号聚合近似算法 多尺度信息熵 k邻近算法
下载PDF
改进混合二进制蝗虫优化特征选择算法 被引量:3
2
作者 赵泽渊 代永强 《计算机科学与探索》 CSCD 北大核心 2021年第7期1339-1349,共11页
特征选择是从数据集的原始特征中选出最优或较优特征子集,从而在加快分类速度的同时提高分类准确率。提出了一种改进的混合二进制蝗虫优化特征选择算法:通过引入步长引导个体位置变化的二进制转化策略,降低了进制转换的盲目性,提高了算... 特征选择是从数据集的原始特征中选出最优或较优特征子集,从而在加快分类速度的同时提高分类准确率。提出了一种改进的混合二进制蝗虫优化特征选择算法:通过引入步长引导个体位置变化的二进制转化策略,降低了进制转换的盲目性,提高了算法在解空间中的搜索性能;通过引入混合复杂进化方法,将蝗虫群体划分子群并独立进化,提高了算法的多样性,降低了早熟收敛的概率。采用改进算法对UCI部分数据集进行特征选择,使用K-NN分类器对特征子集进行分类评价,实验结果表明:与基本二进制蝗虫优化算法、二进制粒子群优化算法和二进制灰狼优化算法相比,改进算法具有较优的搜索性能、收敛性能与较强的鲁棒性,能够获得更好的特征子集,取得更好的分类效果。 展开更多
关键词 二进制 蝗虫优化算法 混合复杂进化方法 特征选择 分类 k邻近(k-nn)算法
下载PDF
主动推送模式下的情报需求预测模型 被引量:1
3
作者 管清波 冯书兴 《系统仿真技术》 2012年第4期300-304,共5页
针对主动推送模式下的情报需求预测问题,提出了基于案例推理的解决方案。设计了进行情报需求预测案例分析的工作流程,建立了案例属性描述模型;应用最近邻法进行案例的相似度评价,并通过信息增益的计算确定每个属性的权值,获得相似案例(... 针对主动推送模式下的情报需求预测问题,提出了基于案例推理的解决方案。设计了进行情报需求预测案例分析的工作流程,建立了案例属性描述模型;应用最近邻法进行案例的相似度评价,并通过信息增益的计算确定每个属性的权值,获得相似案例(集);提出了方案调整和推理策略。 展开更多
关键词 案例推理 情报需求 最近邻法 信息增益
下载PDF
基于可变核的自适应光辐射强度估算
4
作者 王海波 张文辉 +1 位作者 杨辉华 周欢 《计算机应用》 CSCD 北大核心 2011年第8期2240-2242,2245,共4页
针对传统的K最近邻(K-NN)光辐射强度估算只能通过发射大量的光子、增加光子密度来提高估算精度这一缺陷,提出用具有平滑性的可变核(VK)函数估算光辐射强度,通过计算光子到估算点的距离与该光子预先分配的半径之比,实现与传统估算算法不... 针对传统的K最近邻(K-NN)光辐射强度估算只能通过发射大量的光子、增加光子密度来提高估算精度这一缺陷,提出用具有平滑性的可变核(VK)函数估算光辐射强度,通过计算光子到估算点的距离与该光子预先分配的半径之比,实现与传统估算算法不同的自适应光辐射强度估算。实验结果表明,VK算法不需发射大量光子就能改善图像质量且渲染速度快。 展开更多
关键词 光辐射强度估算 k最邻近算法 可变核 自适应
下载PDF
多分类器联合虚警可控的海上小目标检测方法 被引量:3
5
作者 薛安克 毛克成 张乐 《电子与信息学报》 EI CSCD 北大核心 2023年第7期2528-2536,共9页
模式识别技术已经广泛应用于海上目标检测,其中二分类的模式识别算法在处理该问题时会面临类别非均衡的困境。传统方法一般通过添加人工仿真目标回波扩充目标数据集,检测结果容易受到仿真精度的影响,且增加算法的复杂度。该文提出一种... 模式识别技术已经广泛应用于海上目标检测,其中二分类的模式识别算法在处理该问题时会面临类别非均衡的困境。传统方法一般通过添加人工仿真目标回波扩充目标数据集,检测结果容易受到仿真精度的影响,且增加算法的复杂度。该文提出一种基于多分类思想的多特征海上小目标智能检测方法,先对海杂波数据与目标数据进行多维特征提取,构建高维特征空间;再基于多分类思想中的“1对1”方法,将海杂波特征空间划分成多个子空间,每个杂波子空间与目标数据特征空间等大,构造多个二分类器进行联合判决。该文选取的二分类器为改进的双参数K近邻(K-NN)算法,可有效调节虚警率。经冰多参数成像X波段雷达(IPIX)数据集验证,所提方法在观测时间为1.024 s时获得了82.40%的检测概率,与基于K-NN的检测器做比较,获得了2%的性能提升。 展开更多
关键词 海杂波 小目标检测 多分类 双参数寻优k近邻(k-nn)算法 可控虚警
下载PDF
软件定义广域网中控制器部署与交换机动态迁移策略 被引量:5
6
作者 郭烜成 林晖 +1 位作者 叶秀彩 许传丰 《计算机应用》 CSCD 北大核心 2019年第2期453-457,共5页
在软件定义广域网(SD-WAN)部署中,由于广域网(WAN)覆盖范围极大这一特性,单控制器部署策略无论在容量、负载还是安全方面都无法满足其需求,多控制器的部署成为必然趋势。而多控制器部署后整体网络的静态配置很难适应动态的网络流变化,... 在软件定义广域网(SD-WAN)部署中,由于广域网(WAN)覆盖范围极大这一特性,单控制器部署策略无论在容量、负载还是安全方面都无法满足其需求,多控制器的部署成为必然趋势。而多控制器部署后整体网络的静态配置很难适应动态的网络流变化,从而造成控制器的负载不均衡,整体网络性能降低。针对上述问题,提出一种多控制器部署算法SC-cSNN,以有效减小控制器和交换机之间的传播时延;并提出一种基于时延、控制器容量以及控制器安全等特征的交换机动态迁移算法,以有效解决控制器超负载问题。仿真实验结果表明,SC-cSNN控制器部署算法的平均最大时延优于现有的基于k-means和基于谱聚类的控制器部署算法,交换机动态迁移算法从多特征的角度有效地解决了SD-WAN控制器负载不均衡的问题。 展开更多
关键词 软件定义广域网 谱聚类 控制器部署 k邻近算法 交换机动态迁移
下载PDF
结合局部敏感哈希的k近邻数据填补算法 被引量:4
7
作者 郑奇斌 刁兴春 +2 位作者 曹建军 周星 许永平 《计算机应用》 CSCD 北大核心 2016年第2期397-401,共5页
k近邻(kNN)算法是缺失数据填补的常用算法,但由于需要逐个计算所有记录对之间的相似度,因此其填补耗时较高。为提高算法效率,提出结合局部敏感哈希(LSH)的k NN数据填补算法LSH-k NN。首先,对不存在缺失的完整记录进行局部敏感哈希,为之... k近邻(kNN)算法是缺失数据填补的常用算法,但由于需要逐个计算所有记录对之间的相似度,因此其填补耗时较高。为提高算法效率,提出结合局部敏感哈希(LSH)的k NN数据填补算法LSH-k NN。首先,对不存在缺失的完整记录进行局部敏感哈希,为之后查找近似最近邻提供索引;其次,针对枚举型、数值型以及混合型缺失数据分别提出对应的局部敏感哈希方法,对每一条待填补的不完整记录进行局部敏感哈希,按得到的哈希值找到与其疑似相似的候选记录;最后在候选记录中通过逐个计算相似度来找到其中相似程度最高的k条记录,并按照k NN算法对不完整记录进行填补。通过在4个真实数据集上的实验表明,结合局部敏感哈希的k NN填补算法LSH-k NN相对经典的k NN算法能够显著提高填补效率,并且保持准确性基本不变。 展开更多
关键词 数据质量 数据完整性 数据填补 k近邻算法 局部敏感哈希
下载PDF
SCATS线圈数据短时多步双重预测方法 被引量:2
8
作者 李琦 姜桂艳 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第2期123-128,共6页
为了进一步改善悉尼自适应交通控制系统(Sydney coordinated adaptive traffic system,SCATS)线圈数据短时多步预测的效果,在对SCATS线圈数据进行预处理的基础上,将当前与之前若干时间间隔的交通数据及对应的时间点作为交通模式特征向... 为了进一步改善悉尼自适应交通控制系统(Sydney coordinated adaptive traffic system,SCATS)线圈数据短时多步预测的效果,在对SCATS线圈数据进行预处理的基础上,将当前与之前若干时间间隔的交通数据及对应的时间点作为交通模式特征向量的构成要素,用欧式距离作为当前交通模式特征向量和历史交通模式特征向量相似性的测度指标,以多步预测结果的误差最小为目标选取近邻数,通过对交通模式之间距离的倒数正规化处理,确定了所选相似交通模式的未来交通参数的权重,设计了一种基于k近邻(k nearest neighbor,k-NN)算法的短时多步双重预测方法,包括SCATS线圈数据的多步预测方法以及可预测步数在线估计方法,并采用某特大城市SCATS线圈实测数据进行了验证和对比分析.结果表明,所提出的新方法能够进一步降低SCATS线圈数据短时多步预测的误差. 展开更多
关键词 交通运输工程 悉尼自适应交通控制系统 感应线圈 短时交通预测 k近邻算法
下载PDF
基于不规则区域划分方法的k-Nearest Neighbor查询算法 被引量:1
9
作者 张清清 李长云 +3 位作者 李旭 周玲芳 胡淑新 邹豪杰 《计算机系统应用》 2015年第9期186-190,共5页
随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细... 随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细介绍了一种基于不规则区域划分方法的改进型k NN查询算法,并利用对大规模数据集进行分布式并行计算的模型Map Reduce对该算法加以实现.实验结果与分析表明,Map Reduce框架下基于不规则区域划分方法的k NN查询算法可以获得较高的数据处理效率,并可以较好的支持大数据环境下数据的高效查询. 展开更多
关键词 k-nearest neighbor(k nn)查询算法 不规则区域划分方法 MAP REDUCE 大数据
下载PDF
谱图数据融合结合模式识别算法鉴别苹果香精 被引量:2
10
作者 沙敏 宋超 +3 位作者 张正勇 王苏豫 刘军 王海燕 《食品科学》 EI CAS CSCD 北大核心 2016年第22期192-197,共6页
采用拉曼光谱-离子迁移谱(ion mobility spectrometry,IMS)数据融合技术结合主成分分析(principal components analysis,PCA)-最近邻(nearest neighbor,NN)算法的模型鉴别9种食用苹果香精。香精先经水溶液稀释处理,再经拉曼光谱和IMS分... 采用拉曼光谱-离子迁移谱(ion mobility spectrometry,IMS)数据融合技术结合主成分分析(principal components analysis,PCA)-最近邻(nearest neighbor,NN)算法的模型鉴别9种食用苹果香精。香精先经水溶液稀释处理,再经拉曼光谱和IMS分析,建立样品的拉曼光谱和IMS指纹图谱库,然后分别使用单谱数据结合PCANN模型以及拉曼光谱-IMS数据融合结合PCA-NN模型鉴别香精。结果表明:拉曼光谱-IMS结合PCA-NN模型对9种食用苹果香精的识别率达98.35%,高于拉曼光谱的78.14%和IMS的94.18%。使用水溶液稀释技术,不存在副反应,无污染,操作简单快速,保留了样品的整体物质,保证了实验结果的可靠性和稳定性。拉曼光谱仪和离子迁移谱仪具有操作简单、分析速度快的优点。拉曼光谱-IMS结合PCA-NN模型为鉴别食用苹果香精提供了一种可靠、稳定、快速、全新的方法。 展开更多
关键词 苹果香精 拉曼光谱 离子迁移谱 数据融合 主成分分析 最近邻算法 鉴别
下载PDF
基于改进K-NN和SVM的多学科协作诊疗决策支持系统 被引量:1
11
作者 李晓峰 王妍玮 李东 《计算机系统应用》 2020年第6期80-88,共9页
由于当前的诊疗决策支持系统采用单一学科的决策方法,导致诊疗精度不高,获取的数据分类结果准确率较低,提出并设计一种基于改进K-NN(K-Nearest Neighbour)分类算法和SVM(Support Vector Mechine)的多学科协作诊疗决策支持系统.在构建系... 由于当前的诊疗决策支持系统采用单一学科的决策方法,导致诊疗精度不高,获取的数据分类结果准确率较低,提出并设计一种基于改进K-NN(K-Nearest Neighbour)分类算法和SVM(Support Vector Mechine)的多学科协作诊疗决策支持系统.在构建系统总体框架的基础上,对数据库系统模块、人机交互模块和诊疗推理模块进行设计,其中诊疗推理模块是系统的软件核心,通过改进K-NN分类算法和SVM建立推理引擎,在计算机的辅助下,搜索与患者病症信息相似的医疗案例,并进行相似度匹配,根据匹配结果与患者症状集构建一个新的临床案例,引入CDA(Clinical Document Architecture)概念,实现改进K-NN分类算法和SVM算法的有效融合,完成多学科协作诊疗决策.实验结果表明,与传统系统相比,该系统的诊疗决策精度高,评价指标测试平均值达到95.98%,分类结果准确率较高,在该系统辅助下能提高医生诊断正确性,降低误诊率,且运算复杂度较低. 展开更多
关键词 改进k-nn分类算法 SVM 多学科协作 诊疗决策支持系统
下载PDF
基于最近邻-拓扑图的异类传感器目标关联算法 被引量:6
12
作者 袁定波 孟藏珍 +1 位作者 许稼 彭应宁 《雷达学报(中英文)》 2012年第4期393-398,共6页
针对雷达和高动态平台上的红外传感器构成的异类传感器信息融合系统中的目标关联问题,该文提出了一种基于最近邻-拓扑图的目标关联算法。该算法避免了系统误差补偿环节,有效地克服了最近邻方法对系统偏差敏感和拓扑图方法运算量大的不足... 针对雷达和高动态平台上的红外传感器构成的异类传感器信息融合系统中的目标关联问题,该文提出了一种基于最近邻-拓扑图的目标关联算法。该算法避免了系统误差补偿环节,有效地克服了最近邻方法对系统偏差敏感和拓扑图方法运算量大的不足,显著提高了存在系统误差条件下的关联成功率,且具有很强的稳健性。数值实验结果表明了该方法的有效性,目标关联正确率在90%以上。 展开更多
关键词 数据融合 目标关联 拓扑相似性 最近邻算法 拓扑图法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部