为了解决随机功率谱中的数据缺失问题,提出了一种基于K近邻回归(K neighbors regressor)与长短期记忆神经网络(long short term memory,LSTM)的预测方法。在实际工程应用中,功率谱的精度随着时程样本的增加而提高。但是,由于测量的限制...为了解决随机功率谱中的数据缺失问题,提出了一种基于K近邻回归(K neighbors regressor)与长短期记忆神经网络(long short term memory,LSTM)的预测方法。在实际工程应用中,功率谱的精度随着时程样本的增加而提高。但是,由于测量的限制或数据损坏,存在一些数据难以获取或丢失的情况。对此,引入了机器学习的方法来还原随机功率谱。首先,利用K近邻回归方法填充缺失的数据以获得完整时间历史的样本。其次,建立相应的LSTM神经网络模型进行数据训练。模拟实验结果为在缺失30%和50%数据情况下,采用K近邻回归和LSTM神经网络的方法可以很好地还原目标功率谱。目标功率谱与机器学习还原后的功率谱之间的比较证明了方法的准确性和有效性。展开更多
文摘为了解决随机功率谱中的数据缺失问题,提出了一种基于K近邻回归(K neighbors regressor)与长短期记忆神经网络(long short term memory,LSTM)的预测方法。在实际工程应用中,功率谱的精度随着时程样本的增加而提高。但是,由于测量的限制或数据损坏,存在一些数据难以获取或丢失的情况。对此,引入了机器学习的方法来还原随机功率谱。首先,利用K近邻回归方法填充缺失的数据以获得完整时间历史的样本。其次,建立相应的LSTM神经网络模型进行数据训练。模拟实验结果为在缺失30%和50%数据情况下,采用K近邻回归和LSTM神经网络的方法可以很好地还原目标功率谱。目标功率谱与机器学习还原后的功率谱之间的比较证明了方法的准确性和有效性。