A jointless bridge could fundamentally eliminate vulnerable deck joints, thereby meeting the need for sustainable development of bridges, especially for an expressway with highspeed traffic. In this paper, one jointle...A jointless bridge could fundamentally eliminate vulnerable deck joints, thereby meeting the need for sustainable development of bridges, especially for an expressway with highspeed traffic. In this paper, one jointless bridge(deck-extension bridge) with a small box girder in an expressway was chosen as a case study to examine the structural design,construction and field test. The field tests of the bridge indicated that the designed and constructed structures can satisfy the requirement for service performance of the deckextension bridge. Some key technologies, such as the position of longitudinal reinforcements in the superstructure-approach slab connections and the arrangement of the sliding material layers, were introduced. The longitudinal thermal movement of the superstructure in the deck-extension bridge with a small box girder could be predicted accurately by using the average temperature of the cross section of a small box girder. The finite element model, built by using the MIDAS program, was used to analyze the temperature distribution on the cross section of a small box girder, the accuracy of which could be verified by comparing with the measured values. The maximum longitudinal thermal movement of the superstructure in deck-extension bridges with a small box girder under historically extreme temperature conditions was predicted.展开更多
The application of High‐Temperature Superconductor(HTS)coils made of coated conductors has been investigated for many years.A possible configuration for such coils is the jointless loop,also known as the ring coil.Th...The application of High‐Temperature Superconductor(HTS)coils made of coated conductors has been investigated for many years.A possible configuration for such coils is the jointless loop,also known as the ring coil.The double crossed loop coil(DCLC)has been successfully applied in superconducting magnetic bearings(SMBs).The design of SMBs with DCLCs requires flexible modelling to allow all parts of the device to be represented.This work proposes the T‐A formulation with a thin‐film approximation for modelling SMB with DCLCs in the finite element analysis framework.A 2D representation of the system is coupled with an external electric circuit to model the continuity of the lines that represent the parts of each jointless loop.To couple the T‐A formulation and the circuit,an average of the total electric field,with both resistive and inductive components,is applied to the circuit.The total current computed by the circuit is applied to the T‐A formulation.The proposed methodology was validated by comparison with levitation force experimental data.Two types of tests were simulated:five levitation force tests and three guidance force tests.It is shown that there is a limit to the behaviour of the levitation force related to the high‐loss state.Below this limit,the stack of DCLCs behaves as an equivalent bulk.Beyond this limit,a high‐loss state appears as a linear growth of the levitation force.It is also shown that this high‐loss state in vertical displacement influences the lateral force.展开更多
The action between bridge and ballasted jointless turnout on bridge is reversible. To locate the force path between them,the model of a jointless turnout on a 4×32 m continuous beam were calculated and analyzed. ...The action between bridge and ballasted jointless turnout on bridge is reversible. To locate the force path between them,the model of a jointless turnout on a 4×32 m continuous beam were calculated and analyzed. Also analyzed were factors of influence,such as:temperature increment,longitudinal pier stiffness,ballast resistances,and turnout and bridge layouts.展开更多
For the longitudinally coupled baUastless turnout on Leida bridge on Wuhan-Guangzhou passenger dedicated line (PDL) in China, a turnout (cross over)-track slab-bridge deck-pier integrated finite element model was ...For the longitudinally coupled baUastless turnout on Leida bridge on Wuhan-Guangzhou passenger dedicated line (PDL) in China, a turnout (cross over)-track slab-bridge deck-pier integrated finite element model was established, in which two No. 18 jointless turnouts with movable frogs in form of crossover, longitudinally coupled ballastless track, bridges and piers were regarded as one system. Based on this model, the additional forces and displacement regularities of turnouts, track slab, bridges and piers under occasional loading were analyzed, and the effect of occasional loading position was researched. The results show that slab breaking is more influential on the longitudinal force and deformation of the whole system than rail breaking, that slab breaking on one line could deteriorate both the slab force on another line and the forces exerted on the piers and fastener components, and that a great slab force at the left end of the continuous bridge expansion joint should be particularly avoided in design.展开更多
Since 1990s, the use of deicing salts (i.e., chlorides) has dramatically increased in areas with heavy snowfall in Japan. As a result, the water mixed with salts has accelerated the damage of the reinforced concrete...Since 1990s, the use of deicing salts (i.e., chlorides) has dramatically increased in areas with heavy snowfall in Japan. As a result, the water mixed with salts has accelerated the damage of the reinforced concrete (hereafter, RC) structures. Recently conducted inspection results of RC bridges have reported that many of the damages or deteriorations are observed at the girder ends and abutments This is caused from the water leakage due to the aged expansion joints. In general, the cost for repairing the damaged RC structures is much higher than that for renewing the expansion joints. Therefore, to prevent these damages, we developed a new highly durable jointless system, named RC plug joint, for existing RC bridges with a bridge length less than 40 meters. The RC plug joint connects the abutment's backwall to the superstructure's deck using reinforcing steel bars and fiber reinforced concrete. The newly developed RC plug joint system can prevent water leakage and allow for a smooth ride of vehicles at the joint. This paper will explore and discuss the development of the RC plug joint, analysis of conducted investigations, and future installation methods.展开更多
基金supported by National Natural Science Foundation of China(grant numbers 51508103,51778148,51578161)Recruitment Program of Global Experts Foundation(grant number TM2012-27)
文摘A jointless bridge could fundamentally eliminate vulnerable deck joints, thereby meeting the need for sustainable development of bridges, especially for an expressway with highspeed traffic. In this paper, one jointless bridge(deck-extension bridge) with a small box girder in an expressway was chosen as a case study to examine the structural design,construction and field test. The field tests of the bridge indicated that the designed and constructed structures can satisfy the requirement for service performance of the deckextension bridge. Some key technologies, such as the position of longitudinal reinforcements in the superstructure-approach slab connections and the arrangement of the sliding material layers, were introduced. The longitudinal thermal movement of the superstructure in the deck-extension bridge with a small box girder could be predicted accurately by using the average temperature of the cross section of a small box girder. The finite element model, built by using the MIDAS program, was used to analyze the temperature distribution on the cross section of a small box girder, the accuracy of which could be verified by comparing with the measured values. The maximum longitudinal thermal movement of the superstructure in deck-extension bridges with a small box girder under historically extreme temperature conditions was predicted.
基金the Conselho Nacional de Desenvolvimento Científico e Tecnológico‐Brasil(CNPq)the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior‐Brasil(CAPES),finance code 001,INCT‐CNPq INERGE and FAPERJ.
文摘The application of High‐Temperature Superconductor(HTS)coils made of coated conductors has been investigated for many years.A possible configuration for such coils is the jointless loop,also known as the ring coil.The double crossed loop coil(DCLC)has been successfully applied in superconducting magnetic bearings(SMBs).The design of SMBs with DCLCs requires flexible modelling to allow all parts of the device to be represented.This work proposes the T‐A formulation with a thin‐film approximation for modelling SMB with DCLCs in the finite element analysis framework.A 2D representation of the system is coupled with an external electric circuit to model the continuity of the lines that represent the parts of each jointless loop.To couple the T‐A formulation and the circuit,an average of the total electric field,with both resistive and inductive components,is applied to the circuit.The total current computed by the circuit is applied to the T‐A formulation.The proposed methodology was validated by comparison with levitation force experimental data.Two types of tests were simulated:five levitation force tests and three guidance force tests.It is shown that there is a limit to the behaviour of the levitation force related to the high‐loss state.Below this limit,the stack of DCLCs behaves as an equivalent bulk.Beyond this limit,a high‐loss state appears as a linear growth of the levitation force.It is also shown that this high‐loss state in vertical displacement influences the lateral force.
文摘The action between bridge and ballasted jointless turnout on bridge is reversible. To locate the force path between them,the model of a jointless turnout on a 4×32 m continuous beam were calculated and analyzed. Also analyzed were factors of influence,such as:temperature increment,longitudinal pier stiffness,ballast resistances,and turnout and bridge layouts.
文摘For the longitudinally coupled baUastless turnout on Leida bridge on Wuhan-Guangzhou passenger dedicated line (PDL) in China, a turnout (cross over)-track slab-bridge deck-pier integrated finite element model was established, in which two No. 18 jointless turnouts with movable frogs in form of crossover, longitudinally coupled ballastless track, bridges and piers were regarded as one system. Based on this model, the additional forces and displacement regularities of turnouts, track slab, bridges and piers under occasional loading were analyzed, and the effect of occasional loading position was researched. The results show that slab breaking is more influential on the longitudinal force and deformation of the whole system than rail breaking, that slab breaking on one line could deteriorate both the slab force on another line and the forces exerted on the piers and fastener components, and that a great slab force at the left end of the continuous bridge expansion joint should be particularly avoided in design.
文摘Since 1990s, the use of deicing salts (i.e., chlorides) has dramatically increased in areas with heavy snowfall in Japan. As a result, the water mixed with salts has accelerated the damage of the reinforced concrete (hereafter, RC) structures. Recently conducted inspection results of RC bridges have reported that many of the damages or deteriorations are observed at the girder ends and abutments This is caused from the water leakage due to the aged expansion joints. In general, the cost for repairing the damaged RC structures is much higher than that for renewing the expansion joints. Therefore, to prevent these damages, we developed a new highly durable jointless system, named RC plug joint, for existing RC bridges with a bridge length less than 40 meters. The RC plug joint connects the abutment's backwall to the superstructure's deck using reinforcing steel bars and fiber reinforced concrete. The newly developed RC plug joint system can prevent water leakage and allow for a smooth ride of vehicles at the joint. This paper will explore and discuss the development of the RC plug joint, analysis of conducted investigations, and future installation methods.