Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
针对单传感器联合概率数据互联(Joint Probabilistic Data Association,JPDA)在复杂环境下难以跟踪多个目标的问题,提出一种基于JPDA量测目标互联概率统计加权并行式和序贯式多传感器数据融合方法。首先,给出单传感器JPDA算法。然后,介...针对单传感器联合概率数据互联(Joint Probabilistic Data Association,JPDA)在复杂环境下难以跟踪多个目标的问题,提出一种基于JPDA量测目标互联概率统计加权并行式和序贯式多传感器数据融合方法。首先,给出单传感器JPDA算法。然后,介绍多传感器JPDA数学模型,基于这一模型,使用互联概率加权,推导并行式和序贯式多传感器数据融合公式,这对多传感器数据融合有一定指导意义。最后,对单传感器JPDA方法在不同杂波密度、不同过程和不同观测噪声下目标跟踪的距离RMSE进行仿真,结果表明,随着这3项指标皆增大,目标距离RMSE增大;同时,对本文的2类多传感器JPDA方法与其他几类跟踪方法在数据集PETS2009下有关行人跟踪性能进行仿真,结果表明,本文并行式和序贯式多传感器JPDA方法相较于其他方法在跟踪准确性、跟踪位置准确性、航迹维持以及航迹遗失上皆为最优,而且序贯式融合略优于并行式多传感器JPDA。展开更多
针对监控范围较大、目标外观特征少的视频多目标数据关联及跟踪问题,本文仅利用目标运动特征,提出了一种基于联合概率数据关联(joint probabilistic data association,JPDA)的复杂情况下视频多目标快速跟踪方法.首先采用murty算法求JPD...针对监控范围较大、目标外观特征少的视频多目标数据关联及跟踪问题,本文仅利用目标运动特征,提出了一种基于联合概率数据关联(joint probabilistic data association,JPDA)的复杂情况下视频多目标快速跟踪方法.首先采用murty算法求JPDA的最优K个联合事件,大大降低了计算复杂度;然后根据JPDA的关联概率讨论目标的运动情况,分析在多目标新出现、遮挡、消失、分离(前景检测存在目标碎片)等复杂情况下当前帧量测与跟踪目标的数据关联问题,获取复杂运动的多目标跟踪轨迹.在多个监控视频上的实验结果表明,该方法能大大提高跟踪性能,实现复杂情况下的视频多目标快速跟踪.展开更多
High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,wh...High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.展开更多
In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too...In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.展开更多
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
文摘针对单传感器联合概率数据互联(Joint Probabilistic Data Association,JPDA)在复杂环境下难以跟踪多个目标的问题,提出一种基于JPDA量测目标互联概率统计加权并行式和序贯式多传感器数据融合方法。首先,给出单传感器JPDA算法。然后,介绍多传感器JPDA数学模型,基于这一模型,使用互联概率加权,推导并行式和序贯式多传感器数据融合公式,这对多传感器数据融合有一定指导意义。最后,对单传感器JPDA方法在不同杂波密度、不同过程和不同观测噪声下目标跟踪的距离RMSE进行仿真,结果表明,随着这3项指标皆增大,目标距离RMSE增大;同时,对本文的2类多传感器JPDA方法与其他几类跟踪方法在数据集PETS2009下有关行人跟踪性能进行仿真,结果表明,本文并行式和序贯式多传感器JPDA方法相较于其他方法在跟踪准确性、跟踪位置准确性、航迹维持以及航迹遗失上皆为最优,而且序贯式融合略优于并行式多传感器JPDA。
文摘针对监控范围较大、目标外观特征少的视频多目标数据关联及跟踪问题,本文仅利用目标运动特征,提出了一种基于联合概率数据关联(joint probabilistic data association,JPDA)的复杂情况下视频多目标快速跟踪方法.首先采用murty算法求JPDA的最优K个联合事件,大大降低了计算复杂度;然后根据JPDA的关联概率讨论目标的运动情况,分析在多目标新出现、遮挡、消失、分离(前景检测存在目标碎片)等复杂情况下当前帧量测与跟踪目标的数据关联问题,获取复杂运动的多目标跟踪轨迹.在多个监控视频上的实验结果表明,该方法能大大提高跟踪性能,实现复杂情况下的视频多目标快速跟踪.
基金The National Natural Science Foundation of China under contract No.61362002the Marine Scientific Research Special Funds for Public Welfare of China under contract No.201505002
文摘High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.
基金the Youth Science and Technology Foundection of University of Electronic Science andTechnology of China (JX0622).
文摘In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.