针对作物病虫害领域存在实体关系交叉关联、多源异构数据聚合能力差、知识共享困难等问题,利用知识图谱以结构化的形式描述实体间复杂关系的优势,该研究提出了一种基于深度学习的作物病虫害知识图谱构建方法。该方法在领域本体的基础上...针对作物病虫害领域存在实体关系交叉关联、多源异构数据聚合能力差、知识共享困难等问题,利用知识图谱以结构化的形式描述实体间复杂关系的优势,该研究提出了一种基于深度学习的作物病虫害知识图谱构建方法。该方法在领域本体的基础上,以一种与领域语料相适应的新标注模式实现实体和关系的联合抽取。将实体和关系抽取任务转化为序列标注问题,对实体和关系进行同步标注,有效提高标注效率;为了解决重叠关系抽取问题,直接对三元组建模而不是分别对实体和关系建模,通过标签匹配和映射即可获得三元组数据。利用来自转换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)-双向长短期记忆网络(Bi-directional Long-Short Term Memory,BiLSTM)+条件随机场(Conditional Random Field,CRF)端到端模型进行试验,结果表明效果优于基于普通标注方式的流水线方法和联合学习方法中的卷积神经网络(ConvolutionalNeuralNetworks,CNN)+BiLSTM+CRF、BiLSTM+CRF等经典模型,F1得分为91.34%。最后,将抽取到的知识存储到Neo4j图数据库中,直观地反映知识图谱的内部结构,实现知识可视化和知识推理。该研究构建的知识图谱可为作物病虫害智能问答系统、推荐系统、智能搜索等下游应用提供高质量的知识库基础。展开更多
针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句...针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句子编码。针对传统的实体关系抽取方法存在错误传播、实体冗余、交互缺失等问题,以及旅游评论中的实体关系存在一词多义、关系重叠等特征,提出直接对三元组建模,利用句子编码抽取头实体,根据关系类别抽取尾实体,并建立级联结构和指针网络解码输出三元组。基于Neo4j图数据库存储三元组构建旅游知识图谱。实验在建立的旅游数据集上进行,融合BERT-WWM与指针网络的实体关系联合抽取模型的准确率、召回率和F1值分别为93.42%、86.59%和89.88%,与现有模型相比三项指标均显示出优越性,验证了该方法进行实体关系联合抽取的有效性。构建的旅游知识图谱实现了旅游景区信息的整合与存储,对进一步促进旅游业发展具有一定的实际参考意义。展开更多
针对玉米育种文本数据中存在重叠三元组、实体表达方式多样等问题,提出一种嵌入词汇信息的BERT-CRF(Bidirectional encoder representations from transformers-conditional random field)玉米育种实体关系联合抽取方法。首先,分析了玉...针对玉米育种文本数据中存在重叠三元组、实体表达方式多样等问题,提出一种嵌入词汇信息的BERT-CRF(Bidirectional encoder representations from transformers-conditional random field)玉米育种实体关系联合抽取方法。首先,分析了玉米育种语料表达特征,采用对实体边界、关系类别和实体位置信息同步标注的策略;其次,构建了嵌入词汇信息的BERT-CRF模型进行训练和预测,自建玉米育种知识词典,通过在BERT中嵌入词汇信息,融合字符特征和词汇特征,增强模型的语义能力,利用CRF模型输出全局最优标签序列,设计了实体关系三元组匹配算法(Entity and relation triple matching algorithm,ERTM),将标签进行匹配和映射来获取三元组;最后,为验证该方法的有效性,在玉米育种数据集上进行实验,结果表明,本文模型精确率、召回率和F1值分别为91.84%、95.84%、93.80%,与现有模型相比性能均有提升。说明该方法能够有效抽取玉米育种领域知识,为构建玉米育种知识图谱及其它下游任务提供数据基础。展开更多
文摘针对作物病虫害领域存在实体关系交叉关联、多源异构数据聚合能力差、知识共享困难等问题,利用知识图谱以结构化的形式描述实体间复杂关系的优势,该研究提出了一种基于深度学习的作物病虫害知识图谱构建方法。该方法在领域本体的基础上,以一种与领域语料相适应的新标注模式实现实体和关系的联合抽取。将实体和关系抽取任务转化为序列标注问题,对实体和关系进行同步标注,有效提高标注效率;为了解决重叠关系抽取问题,直接对三元组建模而不是分别对实体和关系建模,通过标签匹配和映射即可获得三元组数据。利用来自转换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)-双向长短期记忆网络(Bi-directional Long-Short Term Memory,BiLSTM)+条件随机场(Conditional Random Field,CRF)端到端模型进行试验,结果表明效果优于基于普通标注方式的流水线方法和联合学习方法中的卷积神经网络(ConvolutionalNeuralNetworks,CNN)+BiLSTM+CRF、BiLSTM+CRF等经典模型,F1得分为91.34%。最后,将抽取到的知识存储到Neo4j图数据库中,直观地反映知识图谱的内部结构,实现知识可视化和知识推理。该研究构建的知识图谱可为作物病虫害智能问答系统、推荐系统、智能搜索等下游应用提供高质量的知识库基础。
文摘针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句子编码。针对传统的实体关系抽取方法存在错误传播、实体冗余、交互缺失等问题,以及旅游评论中的实体关系存在一词多义、关系重叠等特征,提出直接对三元组建模,利用句子编码抽取头实体,根据关系类别抽取尾实体,并建立级联结构和指针网络解码输出三元组。基于Neo4j图数据库存储三元组构建旅游知识图谱。实验在建立的旅游数据集上进行,融合BERT-WWM与指针网络的实体关系联合抽取模型的准确率、召回率和F1值分别为93.42%、86.59%和89.88%,与现有模型相比三项指标均显示出优越性,验证了该方法进行实体关系联合抽取的有效性。构建的旅游知识图谱实现了旅游景区信息的整合与存储,对进一步促进旅游业发展具有一定的实际参考意义。
文摘针对玉米育种文本数据中存在重叠三元组、实体表达方式多样等问题,提出一种嵌入词汇信息的BERT-CRF(Bidirectional encoder representations from transformers-conditional random field)玉米育种实体关系联合抽取方法。首先,分析了玉米育种语料表达特征,采用对实体边界、关系类别和实体位置信息同步标注的策略;其次,构建了嵌入词汇信息的BERT-CRF模型进行训练和预测,自建玉米育种知识词典,通过在BERT中嵌入词汇信息,融合字符特征和词汇特征,增强模型的语义能力,利用CRF模型输出全局最优标签序列,设计了实体关系三元组匹配算法(Entity and relation triple matching algorithm,ERTM),将标签进行匹配和映射来获取三元组;最后,为验证该方法的有效性,在玉米育种数据集上进行实验,结果表明,本文模型精确率、召回率和F1值分别为91.84%、95.84%、93.80%,与现有模型相比性能均有提升。说明该方法能够有效抽取玉米育种领域知识,为构建玉米育种知识图谱及其它下游任务提供数据基础。