期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多阶段时序和语义信息增强的问题生成模型
1
作者
周菊香
周明涛
+1 位作者
甘健侯
徐坚
《计算机工程与科学》
CSCD
北大核心
2023年第10期1847-1857,共11页
针对图到序列的问题生成模型编码器的多阶段编码以及解码过程中容易丢失段落中丰富的序列信息和语义结构信息的问题,设计了基于多阶段时序和语义信息增强的模型MS-SIE。首先,将编码器不同阶段编码的段落语义信息进行融合,输入到循环神...
针对图到序列的问题生成模型编码器的多阶段编码以及解码过程中容易丢失段落中丰富的序列信息和语义结构信息的问题,设计了基于多阶段时序和语义信息增强的模型MS-SIE。首先,将编码器不同阶段编码的段落语义信息进行融合,输入到循环神经网络进行编码;然后,在解码阶段引入迭代图神经网络,将编码后的段落信息与解码阶段隐藏在先前生成的文本问题中丰富的语义结构信息相结合;最后,利用基于注意力机制的循环神经网络生成问题。实验结果表明,提出的模型在自动评估指标和人工评价指标上均明显优于现有的序列到序列模型和图到序列模型。
展开更多
关键词
问题生成
多阶段时序融合
语义信息增强
循环神经网络
迭代图神经网络
下载PDF
职称材料
题名
多阶段时序和语义信息增强的问题生成模型
1
作者
周菊香
周明涛
甘健侯
徐坚
机构
云南师范大学民族教育信息化教育部重点实验室
云南师范大学云南省智慧教育重点实验室
曲靖师范学院信息工程学院
出处
《计算机工程与科学》
CSCD
北大核心
2023年第10期1847-1857,共11页
基金
国家自然科学基金(62166050)。
文摘
针对图到序列的问题生成模型编码器的多阶段编码以及解码过程中容易丢失段落中丰富的序列信息和语义结构信息的问题,设计了基于多阶段时序和语义信息增强的模型MS-SIE。首先,将编码器不同阶段编码的段落语义信息进行融合,输入到循环神经网络进行编码;然后,在解码阶段引入迭代图神经网络,将编码后的段落信息与解码阶段隐藏在先前生成的文本问题中丰富的语义结构信息相结合;最后,利用基于注意力机制的循环神经网络生成问题。实验结果表明,提出的模型在自动评估指标和人工评价指标上均明显优于现有的序列到序列模型和图到序列模型。
关键词
问题生成
多阶段时序融合
语义信息增强
循环神经网络
迭代图神经网络
Keywords
question
generation
multi-stage
temporal
fusion
semantic
information
enhancement
recurrent
neural
network
iterative
graph
neural
network
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多阶段时序和语义信息增强的问题生成模型
周菊香
周明涛
甘健侯
徐坚
《计算机工程与科学》
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部