Kellogg gave a version of the Peaceman-Radford method. In this paper, we introduce a SSOR iteration method which uses Kellogg’s method. The new algorithm has some advantages over the traditional SSOR algorithm. A Cyc...Kellogg gave a version of the Peaceman-Radford method. In this paper, we introduce a SSOR iteration method which uses Kellogg’s method. The new algorithm has some advantages over the traditional SSOR algorithm. A Cyclic Reduction algorithm is introduced via a decoupling in Kellogg’s method.展开更多
In this paper, a modified Hermitian and skew-Hermitian splitting (MHSS) iteration method for solving the complex linear matrix equation AXB = C has been presented. As the theoretical analysis shows, the MHSS iterati...In this paper, a modified Hermitian and skew-Hermitian splitting (MHSS) iteration method for solving the complex linear matrix equation AXB = C has been presented. As the theoretical analysis shows, the MHSS iteration method will converge under cer- tain conditions. Each iteration in this method requires the solution of four linear matrix equations with real symmetric positive definite coefficient matrices, although the original coefficient matrices are complex and non-Hermitian. In addition, the optimal parameter of the new iteration method is proposed. Numerical results show that MHSS iteration method is efficient and robust.展开更多
A class of asynchronous nested matrix multisplitting methods for solving large-scale systems of linear equations are proposed, and their convergence characterizations are studied in detail when the coefficient matrice...A class of asynchronous nested matrix multisplitting methods for solving large-scale systems of linear equations are proposed, and their convergence characterizations are studied in detail when the coefficient matrices of the linear systems are monotone matrices and H-matrices, respectively.展开更多
Focuses on a study which presented a parallel chaotic multisplitting method for solving the large sparse linear complementarity problem. Preliminaries of the study; Equations of the parallel chaotic multisplitting met...Focuses on a study which presented a parallel chaotic multisplitting method for solving the large sparse linear complementarity problem. Preliminaries of the study; Equations of the parallel chaotic multisplitting method; Information on the convergence theories; Details on the parallel chaotic multisplitting relaxation methods.展开更多
In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system...In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system Ax = f. The convergence of the resulting method is proved when the spectrum of the matrix A lie in the right upper (or lower) part of the complex plane. We also derive an upper bound of the spectral radius of the HSS iteration matrix, and a estimated optimal parameter a (denoted by a^st) of this upper bound is presented. Numerical experiments on two modified model problems show that the HSS method with a est has a smaller spectral radius than that with the real parameter which minimizes the corresponding upper hound. In particular, for the 'dominant' imaginary part of the matrix A, this improvement is considerable. We also test the GMRES method preconditioned by the HSS preconditioning matrix with our parameter a est.展开更多
The Modified Hermitian and skew-Hermitian splitting (MHSS) iteration method was presented and studied by Bai, Benzi and Chen (Computing, 87(2010), 93-111) for solving a class of complex symmetric linear systems....The Modified Hermitian and skew-Hermitian splitting (MHSS) iteration method was presented and studied by Bai, Benzi and Chen (Computing, 87(2010), 93-111) for solving a class of complex symmetric linear systems. In this paper, using the properties of Toeplitz matrix, we propose a class of structured MHSS iteration methods for solving the complex Toeplitz linear system. Theoretical analysis shows that the structured MHSS iteration method is unconditionally convergent to the exact solution. When the MHSS iteration method is used directly to complex symmetric Toeplitz linear systems, the computational costs can be considerately reduced by use of Toeplitz structure. Finally, numerical ex- periments show that the structured MHSS iteration method and the structured MHSS preconditioner are efficient for solving the complex Toeplitz linear system.展开更多
We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solv...We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solving linear systems and the ShermanMorrison-Woodbury formula for updating matrices. Under suitable conditions, we prove the local linear convergence of the new method. An algorithm is presented to find the solution of the quadratic matrix equation and some numerical results are given to show the feasibility and the effectiveness of the algorithm. In addition, we also describe and analyze the block version of the modified Bernoulli iteration method.展开更多
We consider several synchronous and asynchronous multisplitting iteration schemes for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. We establish the convergence theore...We consider several synchronous and asynchronous multisplitting iteration schemes for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. We establish the convergence theorems for the schemes. The numerical experiments show that the schemes are efficient for solving the class of nonlinear complementarity problems.展开更多
文摘Kellogg gave a version of the Peaceman-Radford method. In this paper, we introduce a SSOR iteration method which uses Kellogg’s method. The new algorithm has some advantages over the traditional SSOR algorithm. A Cyclic Reduction algorithm is introduced via a decoupling in Kellogg’s method.
文摘In this paper, a modified Hermitian and skew-Hermitian splitting (MHSS) iteration method for solving the complex linear matrix equation AXB = C has been presented. As the theoretical analysis shows, the MHSS iteration method will converge under cer- tain conditions. Each iteration in this method requires the solution of four linear matrix equations with real symmetric positive definite coefficient matrices, although the original coefficient matrices are complex and non-Hermitian. In addition, the optimal parameter of the new iteration method is proposed. Numerical results show that MHSS iteration method is efficient and robust.
文摘A class of asynchronous nested matrix multisplitting methods for solving large-scale systems of linear equations are proposed, and their convergence characterizations are studied in detail when the coefficient matrices of the linear systems are monotone matrices and H-matrices, respectively.
基金the National Natural Science Foundation of China (19601036) and Subsidized by the SpecialFunds for Major State Basic Research
文摘Focuses on a study which presented a parallel chaotic multisplitting method for solving the large sparse linear complementarity problem. Preliminaries of the study; Equations of the parallel chaotic multisplitting method; Information on the convergence theories; Details on the parallel chaotic multisplitting relaxation methods.
文摘In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system Ax = f. The convergence of the resulting method is proved when the spectrum of the matrix A lie in the right upper (or lower) part of the complex plane. We also derive an upper bound of the spectral radius of the HSS iteration matrix, and a estimated optimal parameter a (denoted by a^st) of this upper bound is presented. Numerical experiments on two modified model problems show that the HSS method with a est has a smaller spectral radius than that with the real parameter which minimizes the corresponding upper hound. In particular, for the 'dominant' imaginary part of the matrix A, this improvement is considerable. We also test the GMRES method preconditioned by the HSS preconditioning matrix with our parameter a est.
基金Acknowledgments. The work was supported by State Key Laboratory of Scientific/Engineer- ing Computing, Chinese Academy of Sciences The International Science and Technology Co- operation Program of China under Grant 2010DFA14700 The Natural Science Foundation of China (NSFC) under Grant 11071192, P.R. China.
文摘The Modified Hermitian and skew-Hermitian splitting (MHSS) iteration method was presented and studied by Bai, Benzi and Chen (Computing, 87(2010), 93-111) for solving a class of complex symmetric linear systems. In this paper, using the properties of Toeplitz matrix, we propose a class of structured MHSS iteration methods for solving the complex Toeplitz linear system. Theoretical analysis shows that the structured MHSS iteration method is unconditionally convergent to the exact solution. When the MHSS iteration method is used directly to complex symmetric Toeplitz linear systems, the computational costs can be considerately reduced by use of Toeplitz structure. Finally, numerical ex- periments show that the structured MHSS iteration method and the structured MHSS preconditioner are efficient for solving the complex Toeplitz linear system.
基金Supported by The Special Funds For Major State Basic Research Projects (No. G1999032803) The China NNSF 0utstanding Young Scientist Foundation (No. 10525102)+1 种基金 The National Natural Science Foundation (No. 10471146) The National Basic Research Program (No. 2005CB321702), P.R. China.
文摘We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solving linear systems and the ShermanMorrison-Woodbury formula for updating matrices. Under suitable conditions, we prove the local linear convergence of the new method. An algorithm is presented to find the solution of the quadratic matrix equation and some numerical results are given to show the feasibility and the effectiveness of the algorithm. In addition, we also describe and analyze the block version of the modified Bernoulli iteration method.
基金The work was done in the state key laboratory of advanced design and manufacture for vehicle body of Hunan university973 national project of China granted 2004CB719402the National Natural Science Foundation of China(No.10371035)
文摘We consider several synchronous and asynchronous multisplitting iteration schemes for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. We establish the convergence theorems for the schemes. The numerical experiments show that the schemes are efficient for solving the class of nonlinear complementarity problems.