期刊文献+
共找到571篇文章
< 1 2 29 >
每页显示 20 50 100
关联规则在医疗数据分析中的应用 被引量:38
1
作者 李虹 蔡之华 《微机发展》 2003年第6期94-97,共4页
介绍了从医疗数据中发现关联规则的方法,分析了医疗数据的特点,并以心脏疾病诊断的数据集为例,阐述了把医疗数据转换成事务数据格式的方法,描述了关联规则挖掘在医疗数据分析中应用所遇到的难题,针对这些难题给出了一种改进的Apriori算... 介绍了从医疗数据中发现关联规则的方法,分析了医疗数据的特点,并以心脏疾病诊断的数据集为例,阐述了把医疗数据转换成事务数据格式的方法,描述了关联规则挖掘在医疗数据分析中应用所遇到的难题,针对这些难题给出了一种改进的Apriori算法,并用数据进行测试。结果表明,此算法优于Apriori算法,它可以减少产生的规则的数量,从而能快速发现有趣的医疗关联规则。 展开更多
关键词 心脏疾病 医疗数据分析 关联规则 数据挖掘 数值属性 APRIORI算法 数据库
下载PDF
A Fast Algorithm for Mining Association Rules 被引量:17
2
作者 黄刘生 陈华平 +1 位作者 王洵 陈国良 《Journal of Computer Science & Technology》 SCIE EI CSCD 2000年第6期619-624,共6页
In this paper, the problem of discovering association rules between items in a large database of sales transactions is discussed, and a novel algorithm, BitMatrix, is proposed. The proposed algorithm is fundamentally ... In this paper, the problem of discovering association rules between items in a large database of sales transactions is discussed, and a novel algorithm, BitMatrix, is proposed. The proposed algorithm is fundamentally different from the known algorithms Apriori and AprioriTid. Empirical evaluation shows that the algorithm outperforms the known ones for large databases. Scale-up experiments show that the algorithm scales linearly with the number of transactions. 展开更多
关键词 DATABASE data mining large itemset association rule minimum support minimum confidence
原文传递
CLS-Miner: efficient and effective closed high-utility itemset mining 被引量:10
3
作者 Thu-Lan DAM Kenli LI +1 位作者 Philippe FOURNIER-VIGER Quang-Huy DUONG 《Frontiers of Computer Science》 SCIE EI CSCD 2019年第2期357-381,共25页
High-utility itemset mining (HUIM) is a popular data mining task with applications in numerous domains. However, traditional HUIM algorithms often produce a very large set of high-utility itemsets (HUIs). As a result,... High-utility itemset mining (HUIM) is a popular data mining task with applications in numerous domains. However, traditional HUIM algorithms often produce a very large set of high-utility itemsets (HUIs). As a result, analyzing HUIs can be very time consuming for users. Moreover, a large set of HUIs also makes HUIM algorithms less efficient in terms of execution time and memory consumption. To address this problem, closed high-utility itemsets (CHUIs), concise and lossless representations of all HUIs, were proposed recently. Although mining CHUIs is useful and desirable, it remains a computationally expensive task. This is because current algorithms often generate a huge number of candidate itemsets and are unable to prune the search space effectively. In this paper, we address these issues by proposing a novel algorithm called CLS-Miner. The proposed algorithm utilizes the utility-list structure to directly compute the utilities of itemsets without producing candidates. It also introduces three novel strategies to reduce the search space, namely chain-estimated utility co-occurrence pruning, lower branch pruning, and pruning by coverage. Moreover, an effective method for checking whether an itemset is a subset of another itemset is introduced to further reduce the time required for discovering CHUIs. To evaluate the performance of the proposed algorithm and its novel strategies, extensive experiments have been conducted on six benchmark datasets having various characteristics. Results show that the proposed strategies are highly efficient and effective, that the proposed CLS-Miner algorithm outperforms the current state-ofthe- art CHUD and CHUI-Miner algorithms, and that CLSMiner scales linearly. 展开更多
关键词 UTILITY MINING high-utility itemset MINING CLOSED itemset MINING CLOSED high-utility itemset MINING
原文传递
Backward Support Computation Method for Positive and Negative Frequent Itemset Mining
4
作者 Mrinmoy Biswas Akash Indrani Mandal Md. Selim Al Mamun 《Journal of Data Analysis and Information Processing》 2023年第1期37-48,共12页
Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on p... Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on positive itemsets generated from frequently occurring itemsets (PFIS). However, there has been a significant study focused on infrequent itemsets with utilization of negative association rules to mine interesting frequent itemsets (NFIS) from transactions. In this work, we propose an efficient backward calculating negative frequent itemset algorithm namely EBC-NFIS for computing backward supports that can extract both positive and negative frequent itemsets synchronously from dataset. EBC-NFIS algorithm is based on popular e-NFIS algorithm that computes supports of negative itemsets from the supports of positive itemsets. The proposed algorithm makes use of previously computed supports from memory to minimize the computation time. In addition, association rules, i.e. positive and negative association rules (PNARs) are generated from discovered frequent itemsets using EBC-NFIS algorithm. The efficiency of the proposed algorithm is verified by several experiments and comparing results with e-NFIS algorithm. The experimental results confirm that the proposed algorithm successfully discovers NFIS and PNARs and runs significantly faster than conventional e-NFIS algorithm. 展开更多
关键词 Data Mining Positive Frequent itemset Negative Frequent itemset Association Rule Backward Support
下载PDF
Parallel Incremental Frequent Itemset Mining for Large Data 被引量:5
5
作者 Yu-Geng Song Hui-Min Cui Xiao-Bing Feng 《Journal of Computer Science & Technology》 SCIE EI CSCD 2017年第2期368-385,共18页
Frequent itemset mining (FIM) is a popular data mining issue adopted in many fields, such as commodity recommendation in the retail industry, log analysis in web searching, and query recommendation (or related sea... Frequent itemset mining (FIM) is a popular data mining issue adopted in many fields, such as commodity recommendation in the retail industry, log analysis in web searching, and query recommendation (or related search). A large number of FIM algorithms have been proposed to obtain better performance, including parallelized algorithms for processing large data volumes. Besides, incremental FIM algorithms are also proposed to deal with incremental database updates. However, most of these incremental algorithms have low parallelism, causing low efficiency on huge databases. This paper presents two parallel incremental FIM algorithms called IncMiningPFP and IncBuildingPFP, implemented on the MapReduce framework. IncMiningPFP preserves the FP-tree mining results of the original pass, and utilizes them for incremental calculations. In particular, we propose a method to generate a partial FP-tree in the incremental pass, in order to avoid unnecessary mining work. Further, some of the incremental parallel tasks can be omitted when the inserted transactions include fewer items. IncbuildingPFP preserves the CanTrees built in the original pass, and then adds new transactions to them during the incremental passes. Our experimental results show that IncMiningPFP can achieve significant speedup over PFP (Parallel FPGrowth) and a sequential incremental algorithm (CanTree) in most cases of incremental input database, and in other cases IncBuildingPFP can achieve it. 展开更多
关键词 incremental parallel FPGrowth data mining frequent itemset mining MAPREDUCE
原文传递
Efficient Mining of Association Rules by Reducingthe Number of Passes over the Database 被引量:2
6
作者 李庆忠 王海洋 +1 位作者 闫中敏 马绍汉 《Journal of Computer Science & Technology》 SCIE EI CSCD 2001年第2期182-188,共7页
This paper introduces a new algorithm of mining association rules. The algorithm RP counts the itemsets with different sizes in the same pass of scanning over the database by dividing the database into m partitions. ... This paper introduces a new algorithm of mining association rules. The algorithm RP counts the itemsets with different sizes in the same pass of scanning over the database by dividing the database into m partitions. The total number of passes over the database is only (k + 2m - 2)/m, where k is the longest size in the itemsets. It is much less than k. 展开更多
关键词 data mining association rule itemset large itemset
原文传递
HUITWU: An Efficient Algorithm for High-Utility Itemset Mining in Transaction Databases 被引量:4
7
作者 Shi-Ming Guo Hong Gao 《Journal of Computer Science & Technology》 SCIE EI CSCD 2016年第4期776-786,共11页
Mining high-utility itemsets (HUIs) from a transaction database refers to the discovery of itemsets with high utilities like profits. Most of existing studies discover HUIs from a transaction database in two phases.... Mining high-utility itemsets (HUIs) from a transaction database refers to the discovery of itemsets with high utilities like profits. Most of existing studies discover HUIs from a transaction database in two phases. In phase 1, different overestimation methods are applied to calculate the upper bounds of the utilities of itemsets. Since the overestimated utilities of itemsets are adopted, the itemsets whose overestimated utilities are no less than a user-specified threshold are selected as candidate HUIs, and they are verified by scanning the database one more time in phase 2. However, a large number of candidate HUIs incur two problems: 1) it requires excessive memory to store these candidates; 2) it needs a large amount of running time to calculate their exact utilities. Vertical data format has been applied to mine HUIs recently. However this kind of method cannot deal with transactions with the same items effectively so that the size of database cannot be reduced sufficiently. The overall performance of algorithms is degraded consequently. Thus an algorithm HUITWU is proposed in this paper for mining HUIs. A novel data structure HUITwu-Tree is adopted to efficiently calculate the utilities of itemsets in a database. Extensive studies with both sparse and dense datasets have demonstrated that our proposed algorithm is more than an order of magnitude faster and consumes less memory than the state-of-the-art algorithms. 展开更多
关键词 data mining high-utility itemset pattern growth
原文传递
A novel algorithm for frequent itemset mining in data warehouses 被引量:2
8
作者 徐利军 谢康林 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第2期216-224,共9页
Current technology for frequent itemset mining mostly applies to the data stored in a single transaction database. This paper presents a novel algorithm MultiClose for frequent itemset mining in data warehouses. Multi... Current technology for frequent itemset mining mostly applies to the data stored in a single transaction database. This paper presents a novel algorithm MultiClose for frequent itemset mining in data warehouses. MultiClose respectively computes the results in single dimension tables and merges the results with a very efficient approach. Close itemsets technique is used to improve the performance of the algorithm. The authors propose an efficient implementation for star schemas in which their al- gorithm outperforms state-of-the-art single-table algorithms. 展开更多
关键词 Frequent itemset Close itemset Star schema Dimension table Fact table
下载PDF
PHUI-GA: GPU-based efficiency evolutionary algorithm for mining high utility itemsets
9
作者 JIANG Haipeng WU Guoqing +3 位作者 SUN Mengdan LI Feng SUN Yunfei FANG Wei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期965-975,共11页
Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform... Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach. 展开更多
关键词 high utility itemset mining(HUIM) graphics process-ing unit(GPU)parallel genetic algorithm(GA) mining perfor-mance
下载PDF
一种快速频繁模式挖掘算法 被引量:5
10
作者 石杰 《烟台大学学报(自然科学与工程版)》 CAS 2015年第2期113-118,共6页
频繁模式挖掘是数据挖掘领域中一个重要的研究方向,目前已有很多算法被用于挖掘频繁模式.本文在研究FP-growth算法的基础上,提出一种新的频繁模式挖掘算法——QFP算法.首先对每一个频繁项建立一棵QFP树,进而根据设定的条件对每棵树进行... 频繁模式挖掘是数据挖掘领域中一个重要的研究方向,目前已有很多算法被用于挖掘频繁模式.本文在研究FP-growth算法的基础上,提出一种新的频繁模式挖掘算法——QFP算法.首先对每一个频繁项建立一棵QFP树,进而根据设定的条件对每棵树进行挖掘,直到找出符合条件的频繁模式.实验证明该算法能够减少条件子树的生成数量,降低对内存空间的依赖和CPU的计算时间,从而提高关联规则挖掘的效率. 展开更多
关键词 数据挖掘 频繁模式 项集
下载PDF
Hadamard Encoding Based Frequent Itemset Mining under Local Differential Privacy 被引量:1
11
作者 赵丹 赵素云 +3 位作者 陈红 刘睿瑄 李翠平 张晓莹 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第6期1403-1422,共20页
Local differential privacy(LDP)approaches to collecting sensitive information for frequent itemset mining(FIM)can reliably guarantee privacy.Most current approaches to FIM under LDP add"padding and sampling"... Local differential privacy(LDP)approaches to collecting sensitive information for frequent itemset mining(FIM)can reliably guarantee privacy.Most current approaches to FIM under LDP add"padding and sampling"steps to obtain frequent itemsets and their frequencies because each user transaction represents a set of items.The current state-of-the-art approach,namely set-value itemset mining(SVSM),must balance variance and bias to achieve accurate results.Thus,an unbiased FIM approach with lower variance is highly promising.To narrow this gap,we propose an Item-Level LDP frequency oracle approach,named the Integrated-with-Hadamard-Transform-Based Frequency Oracle(IHFO).For the first time,Hadamard encoding is introduced to a set of values to encode all items into a fixed vector,and perturbation can be subsequently applied to the vector.An FIM approach,called optimized united itemset mining(O-UISM),is pro-posed to combine the padding-and-sampling-based frequency oracle(PSFO)and the IHFO into a framework for acquiring accurate frequent itemsets with their frequencies.Finally,we theoretically and experimentally demonstrate that O-UISM significantly outperforms the extant approaches in finding frequent itemsets and estimating their frequencies under the same privacy guarantee. 展开更多
关键词 local differential privacy frequent itemset mining frequency oracle
原文传递
关联规则在图像数据挖掘中的应用 被引量:5
12
作者 黄秋勇 唐爱龙 《计算机与现代化》 2009年第10期98-100,共3页
首先分析传统用在挖掘结构化数据关联规则的基本思想,然后分析图像数据的特征,找出图像数据与传统结构化数据的区别,最后结合图像数据的特性将传统的关联规则进行改进,并将它应用在图像数据挖掘中,挖掘出图像数据的相关性。
关键词 关联规则 图像数据挖掘 项集 描述集 支持度
下载PDF
A Parallel High-Utility Itemset Mining Algorithm Based on Hadoop 被引量:1
13
作者 Zaihe Cheng Wei Shen +1 位作者 Wei Fang Jerry Chun-Wei Lin 《Complex System Modeling and Simulation》 2023年第1期47-58,共12页
High-utility itemset mining(HUIM)can consider not only the profit factor but also the profitable factor,which is an essential task in data mining.However,most HUIM algorithms are mainly developed on a single machine,w... High-utility itemset mining(HUIM)can consider not only the profit factor but also the profitable factor,which is an essential task in data mining.However,most HUIM algorithms are mainly developed on a single machine,which is inefficient for big data since limited memory and processing capacities are available.A parallel efficient high-utility itemset mining(P-EFIM)algorithm is proposed based on the Hadoop platform to solve this problem in this paper.In P-EFIM,the transaction-weighted utilization values are calculated and ordered for the itemsets with the MapReduce framework.Then the ordered itemsets are renumbered,and the low-utility itemsets are pruned to improve the dataset utility.In the Map phase,the P-EFIM algorithm divides the task into multiple independent subtasks.It uses the proposed S-style distribution strategy to distribute the subtasks evenly across all nodes to ensure load-balancing.Furthermore,the P-EFIM uses the EFIM algorithm to mine each subtask dataset to enhance the performance in the Reduce phase.Experiments are performed on eight datasets,and the results show that the runtime performance of P-EFIM is significantly higher than that of the PHUI-Growth,which is also HUIM algorithm based on the Hadoop framework. 展开更多
关键词 pattern mining data mining HADOOP PARALLEL high-utility itemset mining big data
原文传递
Multi-Scaling Sampling: An Adaptive Sampling Method for Discovering Approximate Association Rules 被引量:2
14
作者 Cai-YanJia Xie-PingGao 《Journal of Computer Science & Technology》 SCIE EI CSCD 2005年第3期309-318,共10页
One of the obstacles of the efficient association rule mining is theexplosive expansion of data sets since it is costly or impossible to scan large databases, esp., formultiple times. A popular solution to improve the... One of the obstacles of the efficient association rule mining is theexplosive expansion of data sets since it is costly or impossible to scan large databases, esp., formultiple times. A popular solution to improve the speed and scalability of the association rulemining is to do the algorithm on a random sample instead of the entire database. But how toeffectively define and efficiently estimate the degree of error with respect to the outcome of thealgorithm, and how to determine the sample size needed are entangling researches until now. In thispaper, an effective and efficient algorithm is given based on the PAC (Probably Approximate Correct)learning theory to measure and estimate sample error. Then, a new adaptive, on-line, fast samplingstrategy - multi-scaling sampling - is presented inspired by MRA (Multi-Resolution Analysis) andShannon sampling theorem, for quickly obtaining acceptably approximate association rules atappropriate sample size. Both theoretical analysis and empirical study have showed that the Samplingstrategy can achieve a very good speed-accuracy trade-off. 展开更多
关键词 data mining association rule frequent itemset sample error multi-scalingsampling
原文传递
基于项集支持度的关联规则增量更新算法——BISIUA 被引量:4
15
作者 李志刚 李峰 +1 位作者 张善姝 王汝琳 《计算机工程与设计》 CSCD 北大核心 2007年第17期4072-4074,4078,共4页
对当最小支持度和最小置信度都不变的情况下数据库中数据量增加时的关联规则增量更新问题进行了研究。给出了一个简单的判定公式,依据项集在原数据库DB和新添加的数据库db中的实际支持度来判定该项集在更新后的数据库DB∪db中是否频繁。... 对当最小支持度和最小置信度都不变的情况下数据库中数据量增加时的关联规则增量更新问题进行了研究。给出了一个简单的判定公式,依据项集在原数据库DB和新添加的数据库db中的实际支持度来判定该项集在更新后的数据库DB∪db中是否频繁。对Apriori算法进行了改进,使其能适应本增量更新算法。对BISIUA算法思想进行了详细的论述,并在此基础上给出了该算法的形式化描述。由理论分析可知,BISIUA算法能有效提高关联规则增量更新的效率。 展开更多
关键词 数据挖掘 关联规则 增量更新 支持度 项集
下载PDF
应用于入侵检测系统的报警关联的改进Apriori算法 被引量:4
16
作者 王台华 万宇文 +1 位作者 郭帆 余敏 《计算机应用》 CSCD 北大核心 2010年第7期1785-1788,共4页
在众多的关联规则挖掘算法中,Apriori算法是最为经典的一个,但Apriori算法有以下缺陷:需要扫描多次数据库、生成大量候选集以及迭代求解频繁项集。提出了一种一步交集操作得到最大频繁项目集的方法。支持度由交集的次数得到而无需再去... 在众多的关联规则挖掘算法中,Apriori算法是最为经典的一个,但Apriori算法有以下缺陷:需要扫描多次数据库、生成大量候选集以及迭代求解频繁项集。提出了一种一步交集操作得到最大频繁项目集的方法。支持度由交集的次数得到而无需再去扫描事务数据库,将其中一些属性进行编号能减少存储空间且方便搜索候选集列表,从而提高算法的效率。最后针对入侵检测系统形成关联规则。实验结果表明,优化后的算法能有效地提高关联规则挖掘的效率。 展开更多
关键词 数据挖掘 关联规则 APRIORI算法 项集 入侵检测系统
下载PDF
一种用于数据挖掘的二进制挖掘算法 被引量:3
17
作者 何友全 肖建 +2 位作者 黄碧霞 雷妍 熊启军 《计算机应用研究》 CSCD 北大核心 2004年第5期15-16,34,共3页
提出了一种用于数据挖掘的二进制挖掘算法,适用于大型数据仓库的挖掘与分析,其基本原理是运用二进制逻辑“与”运算,从其多属性值域中抽取关键信息,形成决策规则。此方法原理简单、挖掘效率高、适应性强,对电力系统的数据挖掘具有重要... 提出了一种用于数据挖掘的二进制挖掘算法,适用于大型数据仓库的挖掘与分析,其基本原理是运用二进制逻辑“与”运算,从其多属性值域中抽取关键信息,形成决策规则。此方法原理简单、挖掘效率高、适应性强,对电力系统的数据挖掘具有重要的作用。 展开更多
关键词 电力系统 数据挖掘 二进制 支持度 可信度 项集
下载PDF
Incrementally Exploiting Sentential Association for Email Classification
18
作者 李曲 何玉 +1 位作者 冯剑琳 冯玉才 《Journal of Southwest Jiaotong University(English Edition)》 2006年第2期129-134,共6页
A novel association-based algorithm EmailinClass is proposed for incremental Email classification. In view of the fact that the basic semantic unit in an Email is actually a sentence, and the words within the same sen... A novel association-based algorithm EmailinClass is proposed for incremental Email classification. In view of the fact that the basic semantic unit in an Email is actually a sentence, and the words within the same sentence are typically more semantically related than the words that just appear in the same Email, EmailInClass views a sentence rather than an Email as a transaction. Extensive experiments conducted on benchmark corpora Enron reveal that the effectiveness of EmallInClass is superior to the non-incremental alternatives such as NalveBayes and SAT-MOD. In addition, the classification rules generated by EroaillnClass are human readable and revisable, 展开更多
关键词 Document Requent itemset Category frequent itemset MODFIT heuristic Category prefix-tree Incremental classification
下载PDF
Mining Frequent Itemsets in Correlated Uncertain Databases 被引量:1
19
作者 童咏昕 陈雷 余洁莹 《Journal of Computer Science & Technology》 SCIE EI CSCD 2015年第4期696-712,共17页
Recently, with the growing popularity of Internet of Things (IoT) and pervasive computing, a large amount of uncertain data, e.g., RFID data, sensor data, real-time video data, has been collected. As one of the most... Recently, with the growing popularity of Internet of Things (IoT) and pervasive computing, a large amount of uncertain data, e.g., RFID data, sensor data, real-time video data, has been collected. As one of the most fundamental issues of uncertain data mining, uncertain frequent pattern mining has attracted much attention in database and data mining communities. Although there have been some solutions for uncertain frequent pattern mining, most of them assume that the data is independent, which is not true in most real-world scenarios. Therefore, current methods that are based on the independent assumption may generate inaccurate results for correlated uncertain data. In this paper, we focus on the problem of mining frequent itemsets over correlated uncertain data, where correlation can exist in any pair of uncertain data objects (transactions). We propose a novel probabilistic model, called Correlated Frequent Probability model (CFP model) to represent the probability distribution of support in a given correlated uncertain dataset. Based on the distribution of support derived from the CFP model, we observe that some probabilistic frequent itemsets are only frequent in several transactions with high positive correlation. In particular, the itemsets, which are global probabilistic frequent, have more significance in eliminating the influence of the existing noise and correlation in data. In order to reduce redundant frequent itemsets, we further propose a new type of patterns, called global probabilistic frequent itemsets, to identify itemsets that are always frequent in each group of transactions if the whole correlated uncertain database is divided into disjoint groups based on their correlation. To speed up the mining process, we also design a dynamic programming solution, as well as two pruning and bounding techniques. Extensive experiments on both real and synthetic datasets verify the effectiveness and e?ciency of the proposed model and algorithms. 展开更多
关键词 CORRELATION uncertain data probabilistic frequent itemset
原文传递
基于关系数据库的关联规则的形式化开采 被引量:1
20
作者 张博 张虹 《计算机工程与设计》 CSCD 北大核心 2006年第24期4663-4666,共4页
从研究关联规则概念入手,探讨了项目、项目集合和交易数据库等概念在关系数据库中的具体含义,提出了一种全面的、易于理解和使用的关联规则形式化描述方法,并给出了开采关系型数据库中关联规则的一般过程,这为关系型数据库中关联规则开... 从研究关联规则概念入手,探讨了项目、项目集合和交易数据库等概念在关系数据库中的具体含义,提出了一种全面的、易于理解和使用的关联规则形式化描述方法,并给出了开采关系型数据库中关联规则的一般过程,这为关系型数据库中关联规则开采系统的设计奠定了基础,对系统设计者有一定的指导意义。 展开更多
关键词 数据挖掘 关联规则 关系型数据库 项目 项目集合
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部