Using the isotope techniques, the groundwater origin, evolution and circulation in the potential site of China’s high-level waste repository are studied. The results indicate that both shallow groundwaters and deep g...Using the isotope techniques, the groundwater origin, evolution and circulation in the potential site of China’s high-level waste repository are studied. The results indicate that both shallow groundwaters and deep groundwaters in the site area are of meteoric origin. The shallow groundwaters are mainly recharged by modern and local precipitation, and the deep groundwaters are originated from regional precipitation at higher elevation, or may be from the precipitation during the geological history period with lower temperature. Through the study we can also understand that the deep underground is a very low-permeability system where the groundwater flow-rates are very low.展开更多
Hydrograph separation is a fundamental catchment descriptor,revealing information about sources of water in runoff generation processes. The water isotopes are ideal tracers in studying hydrological processes since th...Hydrograph separation is a fundamental catchment descriptor,revealing information about sources of water in runoff generation processes. The water isotopes are ideal tracers in studying hydrological processes since the isotope fractionation produces a natural labeling effect within the hydrologic cycle. The water isotope technique has become one of effective means for investigating complex hydrologic system on a catchment scale. This paper reviews the progress on the use of stable water isotope techniques in catchment hydrograph separation in last decades. Also,the isotope mixing model for hydrograph separation and its uncertainties are explained in detail. In future research,there are three hot issues in the use of isotopic hydrograph separation( IHS) : integrating new approaches into IHS,calibration and verification of IHS model and IHS application in large river basins.展开更多
A new method was developed in this work to account for inorganic Sb species interconversion during soil sample preparation and subsequent separation steps. The Sb(III) and Sb(V) concentrations at each investigated ste...A new method was developed in this work to account for inorganic Sb species interconversion during soil sample preparation and subsequent separation steps. The Sb(III) and Sb(V) concentrations at each investigated step in the analytical procedure were determined using species specific spikes (121Sb(III) with 81.18% and 123Sb(V) with 74.04% enrichment). The spiking of these enriched isotopes species solutions was done separately before soil sample extraction and before HPLC separation. Simply by subtracting the final concentration of each species done by on-line isotope dilution (ID) from its concentration at different stages of the analytical procedure done by species specific ID, the influence of each step on species transformation can be estimated. After optimization, the extraction procedure for inorganic Sb species 6% Sb(III) (1.3 RSD, n = 3) and 43.2% Sb(V) (2.9% RSD, n = 3) as percent of total Sb were detected in the examined soil sample using online ID. Using the above described methodology we found that there was no reduction of Sb(V) to Sb(III) during sample preparation or species separation. While about 9.3% of extractable Sb (4.6% of total) was converted from Sb(III) to Sb(V) during the extraction step, no conversion during HPLC separation step was observed. By compensating for Sb(III) transformation during the sample preparation step;the extractable Sb(III) and Sb(V) as percent of total Sb yielded 10.6% and 38.7%, respectively.展开更多
基金This investigation is supported financially by the IAEA Research Contract (9725/RBF).
文摘Using the isotope techniques, the groundwater origin, evolution and circulation in the potential site of China’s high-level waste repository are studied. The results indicate that both shallow groundwaters and deep groundwaters in the site area are of meteoric origin. The shallow groundwaters are mainly recharged by modern and local precipitation, and the deep groundwaters are originated from regional precipitation at higher elevation, or may be from the precipitation during the geological history period with lower temperature. Through the study we can also understand that the deep underground is a very low-permeability system where the groundwater flow-rates are very low.
基金Supported by the National Natural Science Foundation of China(41101066)the China Postdoctoral Science Foundation Funded Project(2013M532094)
文摘Hydrograph separation is a fundamental catchment descriptor,revealing information about sources of water in runoff generation processes. The water isotopes are ideal tracers in studying hydrological processes since the isotope fractionation produces a natural labeling effect within the hydrologic cycle. The water isotope technique has become one of effective means for investigating complex hydrologic system on a catchment scale. This paper reviews the progress on the use of stable water isotope techniques in catchment hydrograph separation in last decades. Also,the isotope mixing model for hydrograph separation and its uncertainties are explained in detail. In future research,there are three hot issues in the use of isotopic hydrograph separation( IHS) : integrating new approaches into IHS,calibration and verification of IHS model and IHS application in large river basins.
文摘A new method was developed in this work to account for inorganic Sb species interconversion during soil sample preparation and subsequent separation steps. The Sb(III) and Sb(V) concentrations at each investigated step in the analytical procedure were determined using species specific spikes (121Sb(III) with 81.18% and 123Sb(V) with 74.04% enrichment). The spiking of these enriched isotopes species solutions was done separately before soil sample extraction and before HPLC separation. Simply by subtracting the final concentration of each species done by on-line isotope dilution (ID) from its concentration at different stages of the analytical procedure done by species specific ID, the influence of each step on species transformation can be estimated. After optimization, the extraction procedure for inorganic Sb species 6% Sb(III) (1.3 RSD, n = 3) and 43.2% Sb(V) (2.9% RSD, n = 3) as percent of total Sb were detected in the examined soil sample using online ID. Using the above described methodology we found that there was no reduction of Sb(V) to Sb(III) during sample preparation or species separation. While about 9.3% of extractable Sb (4.6% of total) was converted from Sb(III) to Sb(V) during the extraction step, no conversion during HPLC separation step was observed. By compensating for Sb(III) transformation during the sample preparation step;the extractable Sb(III) and Sb(V) as percent of total Sb yielded 10.6% and 38.7%, respectively.