A method of estimating the critical rate of temperature rise for the thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC is presented. The information was obtained...A method of estimating the critical rate of temperature rise for the thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC is presented. The information was obtained on the increasing rate of temperature for the first order autocatalytic decomposition of nitrocellulose containing 13.86% nitrogen converting into the thermal explosion.展开更多
介绍了La Fe M(M=Al,Si)化合物在磁热性能研究方面的最新进展。具有NaZn13型晶体结构,含高浓度Fe的La Fe M(M=Al,Si)化合物为良好的软磁材料;用少量的Co替代化合物中Si,Al元素可以将化合物的居里温度提高至室温;对La(Fe1-yCoy)xSi13-x...介绍了La Fe M(M=Al,Si)化合物在磁热性能研究方面的最新进展。具有NaZn13型晶体结构,含高浓度Fe的La Fe M(M=Al,Si)化合物为良好的软磁材料;用少量的Co替代化合物中Si,Al元素可以将化合物的居里温度提高至室温;对La(Fe1-yCoy)xSi13-x化合物,适量的Si,Co组合可使化合物在室温产生可与Gd5Si2Ge2比拟的磁热效应;加入适量的间隙原子H,也可使La(FexSi1-x)13在室温的磁热性能远远大于金属Gd;对含Si量低及含Si量高的La(FexSi1-x)13化合物在相转变点附近由温度和磁场诱导相变的本质做了详细阐述。展开更多
The magnetocaloric properties of the GdsGe2.025Si1.925In0.05 compound have been studied by x-ray diffraction, magnetic and heat capacity measurements. Powder x-ray diffraction measurement shows that the compound has a...The magnetocaloric properties of the GdsGe2.025Si1.925In0.05 compound have been studied by x-ray diffraction, magnetic and heat capacity measurements. Powder x-ray diffraction measurement shows that the compound has a dominant phase of monoclinic Cd5Ge2Si2-type structure and a small quantity of Gds(Ge,Si)3-type phase at room temperature. At about 270 K, this compound shows a first order phase transition. The isothermal magnetic entropy change (△SM) is calculated from the temperature and magnetic field dependences of the magnetization and the temperature dependence of MCE in terms of adiabatic temperature change (△Tad) is calculated from the isothermal magnetic entropy change and the temperature variation in zero-field heat-capacity data. The maximum △SM is -13.6 J·kg^-1.K^- 1 and maximum ATad is 13 K for the magnetic field change of 0 5 T. The Debye temperature (θD) of this compound is 149 K and the value of DOS at the Fermi level is 1.6 states/eV.atom from the low temperature zero-field heat-capacity data. A considerable isothermal magnetic entropy change and adiabatic temperature change under a field change of 0-5 T jointly make the Gd5Ge2.025Si1.925In0.05 compound an attractive candidate for a magnetic refrigerant.展开更多
The structure and magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides La1–xCexFe11.44Si1.56Hy(x=0, 0.1, 0.2, 0.3, 0.4) were investigated.The samples crystallized mainly in the cubic Na Zn13-type ...The structure and magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides La1–xCexFe11.44Si1.56Hy(x=0, 0.1, 0.2, 0.3, 0.4) were investigated.The samples crystallized mainly in the cubic Na Zn13-type structure with a small amount of α-Fe phase as impurity.The lattice constants and Curie temperature presented the same change tendency with increasing of Ce content.For the hydrides, the influence of Ce content on lattice constants was weakened and the values of H concentration y were approximate to be 1.56.The La1–xCexFe11.44Si1.56 compounds exhibited large values of isothermal entropy change –ΔSm around the Curie temperature TC under a low magnetic field change of 1.5 T.The value of –ΔSm increased and then decreased with increasing Ce content, reached the maximum, 26.07 J/kg·K for x=0.3.TC increased up to the vicinity of room temperature by hydrogen absorption for the Ce substituted compounds, but TC only slightly decreased with increasing Ce content.The first-order metamagnetic transition was still kept in the hydrides and the maximum values of –ΔSm were lower than those of the La1–xCexFe11.44Si1.56 compounds, but still remained large values, about 10.5 J/kg K under a magnetic field change of 1.5 T.The values of –ΔSm were nearly independent of the Ce content and did not increase with increasing x for the hydrides.The La1–xCexFe11.44Si1.56Hy(x=0–0.4) hydrides exhibited large magnetic entropy changes, small hysteresis loss and effective refrigerant capacity covered the room temperature range from 305 to 317 K.These hydrides are very useful for the magnetic refrigeration applications near room temperature under low magnetic field change.展开更多
Bulk Mn_(1.2)Fe_(0.8)P_(0.76)Ge_(0.24) alloy was prepared by mechanical milling and subsequent spark plasma sintering technique.Effect of annealing on the structure and magneto-caloric properties of the alloy was inve...Bulk Mn_(1.2)Fe_(0.8)P_(0.76)Ge_(0.24) alloy was prepared by mechanical milling and subsequent spark plasma sintering technique.Effect of annealing on the structure and magneto-caloric properties of the alloy was investigated.XRD results show that both sintered and annealed samples possess a hexagonal Fe_2P-type crystal structure.After annealing,ferromagnetic impurity Fe_3Mn_4Ge_6,which exists in the sintered sample,was eliminated from the alloy.Furthermore,the lattice constants a and c change noticeably,leading to a decrease in c/a ratio,while the cell volume almost remains invariable.As a result,the Curie temperature of the alloy increases from 253 K to 298 K,but the maximum magnetic entropy change decreases from 37.5 to 11.7 J·kg·K^(-1) for 2 T magnetic field change.On the other hand,the thermal hysteresis of M-T curves around T_C upon heating and cooling is 14 and 8 K for the as-sintered and the annealed sample,respectively,showing evident change.展开更多
Recent research progress on magnetocaloric effect of La-Fe-M (M = Al, Si) compounds was presented. La-Fe-M (M = Al, Si) compounds of high Fe content are excellent soft magnetic materials with NaZn13 structure. The Cur...Recent research progress on magnetocaloric effect of La-Fe-M (M = Al, Si) compounds was presented. La-Fe-M (M = Al, Si) compounds of high Fe content are excellent soft magnetic materials with NaZn13 structure. The Curie temperature of the compounds can be increased by substituting small amount of Co for Si, Al. The La(Fe1-xCoy)(x)Si13-x compounds with an appropriate ratio of Co and Si can produce giant magnetocaloric effect comparable to that for Gd5Si2Ge2 at room temperature. The La (FexSi1-x)(13) doped with H can also produce giant magnetocaloric effect at room temperature, which is much greater than that for Gd. For La (FexSi1-x)(13) compounds with low Si or high Si contents. The nature of phase transition near Curie temperature induced by temperature and magnetic field was described in detail.展开更多
基金Supported by the Science and Technology Foundation of Shaanxi Key L aboratory of Physico- Inorganic Chemistry(No.2 9- 3,2 0 0 1) and the Science and Technology Foundation of Propellant and Explosive Combustion of China(No.5 14 5 5 0 10 1)
文摘A method of estimating the critical rate of temperature rise for the thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC is presented. The information was obtained on the increasing rate of temperature for the first order autocatalytic decomposition of nitrocellulose containing 13.86% nitrogen converting into the thermal explosion.
文摘介绍了La Fe M(M=Al,Si)化合物在磁热性能研究方面的最新进展。具有NaZn13型晶体结构,含高浓度Fe的La Fe M(M=Al,Si)化合物为良好的软磁材料;用少量的Co替代化合物中Si,Al元素可以将化合物的居里温度提高至室温;对La(Fe1-yCoy)xSi13-x化合物,适量的Si,Co组合可使化合物在室温产生可与Gd5Si2Ge2比拟的磁热效应;加入适量的间隙原子H,也可使La(FexSi1-x)13在室温的磁热性能远远大于金属Gd;对含Si量低及含Si量高的La(FexSi1-x)13化合物在相转变点附近由温度和磁场诱导相变的本质做了详细阐述。
基金supported by Ankara University Research Funds (Grand Number:BAP 06B4343004)
文摘The magnetocaloric properties of the GdsGe2.025Si1.925In0.05 compound have been studied by x-ray diffraction, magnetic and heat capacity measurements. Powder x-ray diffraction measurement shows that the compound has a dominant phase of monoclinic Cd5Ge2Si2-type structure and a small quantity of Gds(Ge,Si)3-type phase at room temperature. At about 270 K, this compound shows a first order phase transition. The isothermal magnetic entropy change (△SM) is calculated from the temperature and magnetic field dependences of the magnetization and the temperature dependence of MCE in terms of adiabatic temperature change (△Tad) is calculated from the isothermal magnetic entropy change and the temperature variation in zero-field heat-capacity data. The maximum △SM is -13.6 J·kg^-1.K^- 1 and maximum ATad is 13 K for the magnetic field change of 0 5 T. The Debye temperature (θD) of this compound is 149 K and the value of DOS at the Fermi level is 1.6 states/eV.atom from the low temperature zero-field heat-capacity data. A considerable isothermal magnetic entropy change and adiabatic temperature change under a field change of 0-5 T jointly make the Gd5Ge2.025Si1.925In0.05 compound an attractive candidate for a magnetic refrigerant.
基金Project supported by National Natural Science Foundation of China(51261001)
文摘The structure and magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides La1–xCexFe11.44Si1.56Hy(x=0, 0.1, 0.2, 0.3, 0.4) were investigated.The samples crystallized mainly in the cubic Na Zn13-type structure with a small amount of α-Fe phase as impurity.The lattice constants and Curie temperature presented the same change tendency with increasing of Ce content.For the hydrides, the influence of Ce content on lattice constants was weakened and the values of H concentration y were approximate to be 1.56.The La1–xCexFe11.44Si1.56 compounds exhibited large values of isothermal entropy change –ΔSm around the Curie temperature TC under a low magnetic field change of 1.5 T.The value of –ΔSm increased and then decreased with increasing Ce content, reached the maximum, 26.07 J/kg·K for x=0.3.TC increased up to the vicinity of room temperature by hydrogen absorption for the Ce substituted compounds, but TC only slightly decreased with increasing Ce content.The first-order metamagnetic transition was still kept in the hydrides and the maximum values of –ΔSm were lower than those of the La1–xCexFe11.44Si1.56 compounds, but still remained large values, about 10.5 J/kg K under a magnetic field change of 1.5 T.The values of –ΔSm were nearly independent of the Ce content and did not increase with increasing x for the hydrides.The La1–xCexFe11.44Si1.56Hy(x=0–0.4) hydrides exhibited large magnetic entropy changes, small hysteresis loss and effective refrigerant capacity covered the room temperature range from 305 to 317 K.These hydrides are very useful for the magnetic refrigeration applications near room temperature under low magnetic field change.
基金supported by the Beijing Natural Science Foundation (No. 1112005)the National Major Fundamental Research Program of China,Ministry of Science and Technology China (No. 2010CB833100)
文摘Bulk Mn_(1.2)Fe_(0.8)P_(0.76)Ge_(0.24) alloy was prepared by mechanical milling and subsequent spark plasma sintering technique.Effect of annealing on the structure and magneto-caloric properties of the alloy was investigated.XRD results show that both sintered and annealed samples possess a hexagonal Fe_2P-type crystal structure.After annealing,ferromagnetic impurity Fe_3Mn_4Ge_6,which exists in the sintered sample,was eliminated from the alloy.Furthermore,the lattice constants a and c change noticeably,leading to a decrease in c/a ratio,while the cell volume almost remains invariable.As a result,the Curie temperature of the alloy increases from 253 K to 298 K,but the maximum magnetic entropy change decreases from 37.5 to 11.7 J·kg·K^(-1) for 2 T magnetic field change.On the other hand,the thermal hysteresis of M-T curves around T_C upon heating and cooling is 14 and 8 K for the as-sintered and the annealed sample,respectively,showing evident change.
文摘Recent research progress on magnetocaloric effect of La-Fe-M (M = Al, Si) compounds was presented. La-Fe-M (M = Al, Si) compounds of high Fe content are excellent soft magnetic materials with NaZn13 structure. The Curie temperature of the compounds can be increased by substituting small amount of Co for Si, Al. The La(Fe1-xCoy)(x)Si13-x compounds with an appropriate ratio of Co and Si can produce giant magnetocaloric effect comparable to that for Gd5Si2Ge2 at room temperature. The La (FexSi1-x)(13) doped with H can also produce giant magnetocaloric effect at room temperature, which is much greater than that for Gd. For La (FexSi1-x)(13) compounds with low Si or high Si contents. The nature of phase transition near Curie temperature induced by temperature and magnetic field was described in detail.