The heats of formation (HOP) for all the 21 polyisocyanocubanes are calculated systematically with density functional theory (DFT) B3LYP and semiempirical MO(MINDO/3, MNDO, AM1 and PM3) methods. First, the accurate HO...The heats of formation (HOP) for all the 21 polyisocyanocubanes are calculated systematically with density functional theory (DFT) B3LYP and semiempirical MO(MINDO/3, MNDO, AM1 and PM3) methods. First, the accurate HOFs for the 8 title compounds are obtained by means of designed isodesmic reactions at DFT-B3LYP/6-31G* level, and the cubane cage skeleton has not been broken (i.e. choosing cubane as a reference compound) to produce more accurate and reliable results. It is found that there are good linear relationships between the HOFs calculated using the B3LYP/6-31G* and four semiempirical MO methods, respectively, and all of the linear correlation coefficients are more than 0.9971. The HOFs obtained from PM3 calculation are the best among the four semiempirical MO methods. Then, the accurate HOFs at B3LYP/6-31G* level of other 13 polyisocyanocubanes are obtained by systematically correcting their PM3-calculated HOFs. Polyisocyanocubanes have very high HOFs, and the HOFs increase linearly with the increasing of the number of isocyano groups in a molecule. The results show that polyisocyanocubanes are the new generation explosives with highly potential and exploitable value.展开更多
Density functional theory calculations at the B3LYP/6-311G** level are performed to study the geometric and elec- tronic structures of a series of nitroaliphatic compounds. The heats of formation (HOF) are predict...Density functional theory calculations at the B3LYP/6-311G** level are performed to study the geometric and elec- tronic structures of a series of nitroaliphatic compounds. The heats of formation (HOF) are predicted through the designed isodesmic reactions. Thermal stabilities are evaluated via the homolytic bond dissociation energies (BDEs). Further, the correlation is developed between impact sensitivity h50% and the ratio (BDE/E) of the weakest BDE to the total energy E containing zero point energy correction. In addition, the relative stability of the title compounds is evaluated based on the analysis of calculated Mulliken population and the energy gaps between the frontier orbitals. The calculated BDEs, HOFs, and energy gaps consistently indicate that compound 1,1,1,6,6,6-hexanitro-3-hexyne is the most unstable and the compound 3,3,4,4,-tetranitro-hexane is the most stable. These results provide basic information for the molecular design of novel high energetic density materials.展开更多
自由基与分子反应是一类具有负活化能的非基元反应,通常认为是通过反应复合物的两步过程,在大气化学和碳氢燃料燃烧机理中广泛存在,且在理论计算和实验上广泛研究.以碳氢燃料燃烧机理中重要反应类羟基自由基提取烷基过氧化氢α位氢的反...自由基与分子反应是一类具有负活化能的非基元反应,通常认为是通过反应复合物的两步过程,在大气化学和碳氢燃料燃烧机理中广泛存在,且在理论计算和实验上广泛研究.以碳氢燃料燃烧机理中重要反应类羟基自由基提取烷基过氧化氢α位氢的反应为研究对象,通过量化计算揭示其反应规律,计算得到其精确动力学参数.在所研究反应类中,定义第一步反应复合物的生成反应的标准摩尔吉布斯自由能变化等于零时所对应的温度为其转折温度Tc,并表明了当T>>Tc时可采用稳态近似法处理该类反应体系,得到总包反应速率常数.所有反应涉及的物种几何结构优化和频率分析均在BHand HLYP/6-311G(d,p)水平下得到,并在所研究反应类中选取了5个代表反应,通过CCSD(T)/CBS单点能计算,得到其最高转折温度为195.17 K,远远低于碳氢燃料燃烧模拟通常关注温度范围的最低温度650 K,表明用稳态近似法处理该类负活化能反应体系是合理的.计算还表明,该类反应的过渡态反应中心几何结构守恒,因此可将等键反应方法引入类反应,通过对低水平从头算得到的反应能垒进行校正,以得到高精度的结果.为了验证等键反应方法的可靠性,选取5个反应作为研究对象,将低水平BHand HLYP/6-311G(d,p)的校正结果和高水平CCSD(T)/CBS直接计算的结果进行比较,反应能垒最大绝对偏差由校正前的19.99 k J·mol-1降到校正后的1.47 k J·mol-1,表明用等键反应方法,只需在低水平从头算水平下就可以得到高水平的计算结果,从而可解决大分子体系精确动力学参数缺乏的问题.利用等键反应方法计算了20个反应的反应能垒,并结合过渡态理论计算得到了总包反应的速率常数,并揭示了该类反应只在低温段呈现负活化能关系.展开更多
基金This work was supported by the Natural Science Foundation of Chinese Academy of Engineering and Physics (Grant No. 9905330).
文摘The heats of formation (HOP) for all the 21 polyisocyanocubanes are calculated systematically with density functional theory (DFT) B3LYP and semiempirical MO(MINDO/3, MNDO, AM1 and PM3) methods. First, the accurate HOFs for the 8 title compounds are obtained by means of designed isodesmic reactions at DFT-B3LYP/6-31G* level, and the cubane cage skeleton has not been broken (i.e. choosing cubane as a reference compound) to produce more accurate and reliable results. It is found that there are good linear relationships between the HOFs calculated using the B3LYP/6-31G* and four semiempirical MO methods, respectively, and all of the linear correlation coefficients are more than 0.9971. The HOFs obtained from PM3 calculation are the best among the four semiempirical MO methods. Then, the accurate HOFs at B3LYP/6-31G* level of other 13 polyisocyanocubanes are obtained by systematically correcting their PM3-calculated HOFs. Polyisocyanocubanes have very high HOFs, and the HOFs increase linearly with the increasing of the number of isocyano groups in a molecule. The results show that polyisocyanocubanes are the new generation explosives with highly potential and exploitable value.
基金supported by the National Natural Science Foundation of China(Grant Nos.11304022 and11347010)the Research Foundation of Education Bureau of Hubei Province,China(Grant Nos.Q20131208,T201204,and XD2014069)+1 种基金the Foundation of Yangtze University for Outstanding Young Teachers,China(Grant Nos.cyq201321 and cyq201322)the Project for Basic Subjects(Grant No.2013cjp10)
文摘Density functional theory calculations at the B3LYP/6-311G** level are performed to study the geometric and elec- tronic structures of a series of nitroaliphatic compounds. The heats of formation (HOF) are predicted through the designed isodesmic reactions. Thermal stabilities are evaluated via the homolytic bond dissociation energies (BDEs). Further, the correlation is developed between impact sensitivity h50% and the ratio (BDE/E) of the weakest BDE to the total energy E containing zero point energy correction. In addition, the relative stability of the title compounds is evaluated based on the analysis of calculated Mulliken population and the energy gaps between the frontier orbitals. The calculated BDEs, HOFs, and energy gaps consistently indicate that compound 1,1,1,6,6,6-hexanitro-3-hexyne is the most unstable and the compound 3,3,4,4,-tetranitro-hexane is the most stable. These results provide basic information for the molecular design of novel high energetic density materials.
文摘自由基与分子反应是一类具有负活化能的非基元反应,通常认为是通过反应复合物的两步过程,在大气化学和碳氢燃料燃烧机理中广泛存在,且在理论计算和实验上广泛研究.以碳氢燃料燃烧机理中重要反应类羟基自由基提取烷基过氧化氢α位氢的反应为研究对象,通过量化计算揭示其反应规律,计算得到其精确动力学参数.在所研究反应类中,定义第一步反应复合物的生成反应的标准摩尔吉布斯自由能变化等于零时所对应的温度为其转折温度Tc,并表明了当T>>Tc时可采用稳态近似法处理该类反应体系,得到总包反应速率常数.所有反应涉及的物种几何结构优化和频率分析均在BHand HLYP/6-311G(d,p)水平下得到,并在所研究反应类中选取了5个代表反应,通过CCSD(T)/CBS单点能计算,得到其最高转折温度为195.17 K,远远低于碳氢燃料燃烧模拟通常关注温度范围的最低温度650 K,表明用稳态近似法处理该类负活化能反应体系是合理的.计算还表明,该类反应的过渡态反应中心几何结构守恒,因此可将等键反应方法引入类反应,通过对低水平从头算得到的反应能垒进行校正,以得到高精度的结果.为了验证等键反应方法的可靠性,选取5个反应作为研究对象,将低水平BHand HLYP/6-311G(d,p)的校正结果和高水平CCSD(T)/CBS直接计算的结果进行比较,反应能垒最大绝对偏差由校正前的19.99 k J·mol-1降到校正后的1.47 k J·mol-1,表明用等键反应方法,只需在低水平从头算水平下就可以得到高水平的计算结果,从而可解决大分子体系精确动力学参数缺乏的问题.利用等键反应方法计算了20个反应的反应能垒,并结合过渡态理论计算得到了总包反应的速率常数,并揭示了该类反应只在低温段呈现负活化能关系.