Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are kno...Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as- sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur- thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro- filament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes- enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.展开更多
Objective To study the potential role of tumor necrosis factor-α (TNF-α) induction in the development of mucosal barrier dysfunction in rats caused by acute intestinal ischemia-reperfusion injury, and to examine whe...Objective To study the potential role of tumor necrosis factor-α (TNF-α) induction in the development of mucosal barrier dysfunction in rats caused by acute intestinal ischemia-reperfusion injury, and to examine whether pretreatment with monoclonal antibody against TNF-α (TNF-α MoAb) would affect the release of D(-)-lactate after local gut ischemia followed by reperfusion. Methods Anesthetized Sprague-Dawley rats underwent superior mesenteric artery occlusion for 75 min followed by reperfusion for 6 hr. The rats were treated intravenously with either TNF-α MoAb (20 mg/kg) or albumin (20 mg/kg) 30 min prior to the onset of ischemia. Plasma D(-)-lactate levels were measured in both the portal and systemic blood by an enzymatic spectrophotometric assay. Intestinal TNF-αmRNA expression as well as protein levels were also measured at various intervals. In addition, a postmortem examination was performed together with a macropathological evaluation based on a four-grade scoring system.Results Intestinal ischemia resulted in a significant elevation in D(-)-lactate levels in the portal vein blood in both the control and treatment groups ( P <0.05). However, animals pretreated with TNF-α MoAb at 6 hr after reperfusion showed significant attenuation of an increase in both portal and systemic D(-)-lactate levels when compared with those only receiving albumin (P < 0.05). In the control animals, a remarkable rise in intestinal TNF-α level was measured at 0.5 hr after clamp release ( P < 0.01); however, prophylactic treatment with TNF-α MoAb completely annulled the increase of local TNF-α levels seen in the control animals. Similarly, after anti-TNF-α MoAb administration, intestinal TNF-α mRNA expression was markedly inhibited, which showed significant differences when compared with the control group at 0.5 hr, 2 hr and 6 hr after the release of occlusion ( P < 0.05-0.01 ). In addition, the pathological examination showed marked intestinal lesions that formed during ischemia, which were much worse upon rep展开更多
基金supported by the National Natural Science Foundation of China,No.30972153the Science and Technology Development Program of Jilin Provincial Science and Technology Department in China,No.200905183the Scientific Research Foundation of Jilin Department of Health of China,No.2008Z041
文摘Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as- sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur- thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro- filament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes- enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.
基金supported in part by grants from the National Key Program for Fundamental Research and Development(973 Project,Grant No.G1999054203)National Natural Science Outstanding Youth Foundation(Grant No.30125020)the National Natural Science Foundation(Grant No.39870286,30200293)of China.
文摘Objective To study the potential role of tumor necrosis factor-α (TNF-α) induction in the development of mucosal barrier dysfunction in rats caused by acute intestinal ischemia-reperfusion injury, and to examine whether pretreatment with monoclonal antibody against TNF-α (TNF-α MoAb) would affect the release of D(-)-lactate after local gut ischemia followed by reperfusion. Methods Anesthetized Sprague-Dawley rats underwent superior mesenteric artery occlusion for 75 min followed by reperfusion for 6 hr. The rats were treated intravenously with either TNF-α MoAb (20 mg/kg) or albumin (20 mg/kg) 30 min prior to the onset of ischemia. Plasma D(-)-lactate levels were measured in both the portal and systemic blood by an enzymatic spectrophotometric assay. Intestinal TNF-αmRNA expression as well as protein levels were also measured at various intervals. In addition, a postmortem examination was performed together with a macropathological evaluation based on a four-grade scoring system.Results Intestinal ischemia resulted in a significant elevation in D(-)-lactate levels in the portal vein blood in both the control and treatment groups ( P <0.05). However, animals pretreated with TNF-α MoAb at 6 hr after reperfusion showed significant attenuation of an increase in both portal and systemic D(-)-lactate levels when compared with those only receiving albumin (P < 0.05). In the control animals, a remarkable rise in intestinal TNF-α level was measured at 0.5 hr after clamp release ( P < 0.01); however, prophylactic treatment with TNF-α MoAb completely annulled the increase of local TNF-α levels seen in the control animals. Similarly, after anti-TNF-α MoAb administration, intestinal TNF-α mRNA expression was markedly inhibited, which showed significant differences when compared with the control group at 0.5 hr, 2 hr and 6 hr after the release of occlusion ( P < 0.05-0.01 ). In addition, the pathological examination showed marked intestinal lesions that formed during ischemia, which were much worse upon rep