Ischemic stroke and ischemia/reperfusion (I/R) injury induced by thrombolytic therapy are conditions with high mortality and serious long-term physical and cognitive disabilities. They have a major impact on global pu...Ischemic stroke and ischemia/reperfusion (I/R) injury induced by thrombolytic therapy are conditions with high mortality and serious long-term physical and cognitive disabilities. They have a major impact on global public health. These disorders are associated with multiple insults to the cerebral microcirculation, including reactive oxygen species (ROS) overproduction, leukocyte adhesion and infiltration, brain blood barrier (BBB) disruption, and capillary hypoperfusion, ultimately resulting in tissue edema, hemorrhage, brain injury and delayed neuron damage. Traditional Chinese medicine (TCM) has been used in China, Korea, Japan and other Asian countries for treatment of a wide range of diseases. In China, the usage of compound TCM preparation to treat cerebrovascular diseases dates back to the Han Dynasty. Even thousands of years earlier, the medical formulary recorded many classical prescriptions for treating cerebral I/R-related diseases. This review summarizes current information and underlying mechanisms regarding the ameliorating effects of compound Tem preparation, Chinese materia medica, and active components on I/R-induced cerebral imicrocirculatory disturbances, brain injury and neuron damage. (C) 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. Alt rights reserved.展开更多
Reperfusion therapy must be applied as soon as possible to attenuate the ischemic insult of acute myocardial infarction(AMI).However reperfusion is responsible for additional myocardial damage,which likely involves op...Reperfusion therapy must be applied as soon as possible to attenuate the ischemic insult of acute myocardial infarction(AMI).However reperfusion is responsible for additional myocardial damage,which likely involves opening of the mitochondrial permeability transition pore(mPTP).In reperfusion injury,mitochondrial damage is a determining factor in causing loss of cardiomyocyte function and viability.Major mechanisms of mitochondrial dysfunction include the long lasting opening of mPTPs and the oxidative stress resulting from formation of reactive oxygen species(ROS).Several signaling cardioprotective pathways are activated by stimuli such as preconditioning and postconditioning,obtained with brief intermittent ischemia or with pharmacological agents.These pathways converge on a common target,the mitochondria,to preserve their function after ischemia/reperfusion.The present review discusses the role of mitochondria in cardioprotection,especially the involvement of adenosine triphosphate-dependent potassium channels,ROS signaling,and the mPTP.Ischemic postconditioning has emerged as a new way to target the mitochondria,and to drastically reduce lethal reperfusion injury.Several clinical studies using ischemic postconditioning during angioplasty now support its protective effects,and an interesting alternative is pharmacological postconditioning.In fact ischemic postconditioning and the mPTP desensitizer,cyclosporine A,have been shown to induce comparable protection in AMI patients.展开更多
AIM To explore the kinetic changes in plasma D(-)- lactate and lipopolyssccharide(LPS)levels,and investigate whether D(-)-lactate could be used as a marker of intestinal injury in rats following gut ischemia/ reperfus...AIM To explore the kinetic changes in plasma D(-)- lactate and lipopolyssccharide(LPS)levels,and investigate whether D(-)-lactate could be used as a marker of intestinal injury in rats following gut ischemia/ reperfusion,burn,and acute necrotizing pancreatitis (ANP). METHODS Three models were developed in rats:① gut ischemia/ reperfusion obtained by one hour of superior mesenteric artery occlusion followed by reperfusion;② severe burn injury created by 30% of total body surface area(TBSA)full-thickness scald burn;and ③ ANP induced by continuous inverse infusion of sodium taurocholate and trypsin into main pancreatic duct. Plasma levels of D(-)-lactate in systemic circulation and LPS in portal circulation were measured by enzymatic- spectrophotometric method and limulus amebocyte lysate (LAL)test kit,respectively.Tissue samples of intestine were taken for histological analysis. RESULTS One hour gut ischemia followed by reperfusion injuries resulted in a significant elevation in plasma D(-)- lactate and LPS levels,and there was a significant correlation between the plasma D(-)-lactate and LPS(r =0.719,P<0.05).The plasma concentrations of D(-)- lactate and LPS increased significantly at 6h postburn, and there was also a remarkable correlation between them (r = 0.877,P < 0.01).D(-)-lactate and LPS levels elevated significantly at 2h after ANP,with a similar significant correlation between the two levels(r = 0.798, P < 0.01 ).The desquamation of intestine villi and infiltration of inflammatory cells in the lamina propria were observed in all groups. CONCLUSION The changes of plasma D(-)-lactate levels in systemic blood paralleled with LPS levels in the portal vein blood.The measurement of plasma D(-)-lactate level may be a useful marker to assess the intestinal injury and to monitor an increase of intestinal permeability and endotoxemia following severe injuries in early stage.展开更多
Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustraz...Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administra- tion, and the most effective mode of administration for clinical treatment of cerebral ischemia/ reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine admin- istration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyl)oxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC 195 after cerebral ischemia were better than ligustrazine.展开更多
Ischemia/reperfusion(I/R) is a pathological process that occurs in numerous organs throughout the human body, and it is frequently associated with severe cellular damage and death. Recently it has emerged that ferropt...Ischemia/reperfusion(I/R) is a pathological process that occurs in numerous organs throughout the human body, and it is frequently associated with severe cellular damage and death. Recently it has emerged that ferroptosis, a new form of regulated cell death that is caused by iron-dependent lipid peroxidation, plays a significantly detrimental role in many I/R models. In this review, we aim to revise the pathological process of I/R and then explore the molecular pathogenesis of ferroptosis. Furthermore,we aim to evaluate the role that ferroptosis plays in I/R, providing evidence to support the targeting of ferroptosis in the I/R pathway may present as a therapeutic intervention to alleviate ischemia/reperfusion injury(IRI) associated cell damage and death.展开更多
Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPKm TOR signaling pathway regulates the activation of the autophagy pathway through the c...Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPKm TOR signaling pathway regulates the activation of the autophagy pathway through the coordinated phosphorylation of ULK1. In this study, we investigated the mechanisms underlying the neuroprotective effect of puerarin and its role in modulating autophagy via the AMPK-m TOR-ULK1 signaling pathway in the rat middle cerebral artery occlusion model of cerebral ischemia/reperfusion injury. Rats were intraperitoneally injected with puerarin, 50 or 100 mg/kg, daily for 7 days. Then, 30 minutes after the final administration, rats were subjected to transient middle cerebral artery occlusion for 90 minutes. Then, after 24 hours of reperfusion, the Longa score and infarct volume were evaluated in each group. Autophagosome formation was observed by transmission electron microscopy. LC3, Beclin-1 p62, AMPK, m TOR and ULK1 protein expression levels were examined by immunofluorescence and western blot assay. Puerarin substantially reduced the Longa score and infarct volume, and it lessened autophagosome formation in the hippocampal CA1 area following cerebral ischemia/reperfusion injury in a dose-dependent manner. Pretreatment with puerarin(50 or 100 mg/kg) reduced Beclin-1 expression and the LC3-II/LC3-I ratio, as well as p-AMPK and p S317-ULK1 levels. In comparison, it increased p62 expression. Furthermore, puerarin at 100 mg/kg dramatically increased the levels of p-m TOR and p S757-ULK1 in the hippocampus on the ischemic side. Our findings suggest that puerarin alleviates autophagy by activating the APMK-m TOR-ULK1 signaling pathway. Thus, puerarin might have therapeutic potential for treating cerebral ischemia/reperfusion injury.展开更多
Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery.Understanding the mechanisms of liver ischemia reperfusion injury(IRI) and developing strategies to counteract this ...Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery.Understanding the mechanisms of liver ischemia reperfusion injury(IRI) and developing strategies to counteract this injury will therefore reduce acute complications in hepatic resection and transplantation,as well as expanding the potential pool of usable donor grafts.The initial liver injury is initiated by reactive oxygen species which cause direct cellular injury and also activate a cascade of molecular mediators leading to microvascular changes,increased apoptosis and acute inflammatory changes with increased hepatocyte necrosis.Some adaptive pathways are activated during reperfusion that reduce the reperfusion injury.IRI involves a complex interplay between neutrophils,natural killer T-cells cells,CD4+ T cell subtypes,cytokines,nitric oxide synthases,haem oxygenase-1,survival kinases such as the signal transducer and activator of transcription,Phosphatidylinositol 3-kinases/Akt and nuclear factor κβ pathways.Transgenic animals,particularly genetic knockout models,have become a powerful tool at elucidating mechanisms of liver ischaemia reperfusion injury and are complementary to pharmacological studies.Targeted disruption of the protein at the genetic level is more specific and maintained than pharmacological inhibitors or stimulants of the same protein.This article reviews the evidence from knockout models of liver IRI about the cellular and molecular mechanisms underlying liver IRI.展开更多
Ischemia/reperfusion injury is an unavoidable relevant consequence after kidney transplantation and influences short term as well as long-term graft outcome. Clinically ischemia/reperfusion injury is associated with d...Ischemia/reperfusion injury is an unavoidable relevant consequence after kidney transplantation and influences short term as well as long-term graft outcome. Clinically ischemia/reperfusion injury is associated with delayed graft function, graft rejection, chronic rejection and chronic graft dysfunction. Ischemia/reperfusion affects many regulatory systems at the cellular level as well as in the renal tissue that result in a distinct inflammatory reaction of the kidney graft. Underlying factors of ischemia reperfusion include energy metabolism, cellular changes of the mitochondria and cellular membranes, initiation of different forms of cell death-like apoptosis and necrosis together with a recently discovered mixed form termed necroptosis. Chemokines and cytokines together with other factors promote the inflammatory response leading to activation of the innate immune system as well as the adaptive immune system. If the inflammatory reaction continues within the graft tissue, a progressive interstitial fibrosis develops that impacts long-term graft outcome. It is of particular importance in kidney transplantation to understand the underlying mechanisms and effects of ischemia/reperfusion on the graft as this knowledge also opens strategies to prevent or treat ischemia/reperfusion injury after transplantation in order to improve graft outcome.展开更多
Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival...Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival and cell death, is involved in cerebral ischemia reperfusion injury and might be modulate by electroacupuncture therapy in key ways. This paper aims to provide novel insights into a therapeutic target of electroacupuncture against cerebral ischemia/reperfusion injury from the perspective of autophagy. Here we review recent studies on electroacupuncture regulation of autophagy-related markers such as UNC-51-like kinase-1 complex, Beclin1, microtubule-associated protein-1 light chain 3, p62, and autophagosomes for treating cerebral ischemia/reperfusion injury. The results of these studies show that electroacupuncture may affect the initiation of autophagy, vesicle nucleation, expansion and maturation of autophagosomes, as well as fusion and degradation of autophagolysosomes. Moreover, studies indicate that electroacupuncture probably modulates autophagy by activating the mammalian target of the rapamycin signaling pathway.This review thus indicates that autophagy is a therapeutic target of electroacupuncture treatment against ischemic cerebrovascular diseases.展开更多
文摘Ischemic stroke and ischemia/reperfusion (I/R) injury induced by thrombolytic therapy are conditions with high mortality and serious long-term physical and cognitive disabilities. They have a major impact on global public health. These disorders are associated with multiple insults to the cerebral microcirculation, including reactive oxygen species (ROS) overproduction, leukocyte adhesion and infiltration, brain blood barrier (BBB) disruption, and capillary hypoperfusion, ultimately resulting in tissue edema, hemorrhage, brain injury and delayed neuron damage. Traditional Chinese medicine (TCM) has been used in China, Korea, Japan and other Asian countries for treatment of a wide range of diseases. In China, the usage of compound TCM preparation to treat cerebrovascular diseases dates back to the Han Dynasty. Even thousands of years earlier, the medical formulary recorded many classical prescriptions for treating cerebral I/R-related diseases. This review summarizes current information and underlying mechanisms regarding the ameliorating effects of compound Tem preparation, Chinese materia medica, and active components on I/R-induced cerebral imicrocirculatory disturbances, brain injury and neuron damage. (C) 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. Alt rights reserved.
基金Supported by National Institutes of Cardiovascular ResearchRegione Piemonte,PRIN,ex-60% and Compagnia di San Paolo,Italy
文摘Reperfusion therapy must be applied as soon as possible to attenuate the ischemic insult of acute myocardial infarction(AMI).However reperfusion is responsible for additional myocardial damage,which likely involves opening of the mitochondrial permeability transition pore(mPTP).In reperfusion injury,mitochondrial damage is a determining factor in causing loss of cardiomyocyte function and viability.Major mechanisms of mitochondrial dysfunction include the long lasting opening of mPTPs and the oxidative stress resulting from formation of reactive oxygen species(ROS).Several signaling cardioprotective pathways are activated by stimuli such as preconditioning and postconditioning,obtained with brief intermittent ischemia or with pharmacological agents.These pathways converge on a common target,the mitochondria,to preserve their function after ischemia/reperfusion.The present review discusses the role of mitochondria in cardioprotection,especially the involvement of adenosine triphosphate-dependent potassium channels,ROS signaling,and the mPTP.Ischemic postconditioning has emerged as a new way to target the mitochondria,and to drastically reduce lethal reperfusion injury.Several clinical studies using ischemic postconditioning during angioplasty now support its protective effects,and an interesting alternative is pharmacological postconditioning.In fact ischemic postconditioning and the mPTP desensitizer,cyclosporine A,have been shown to induce comparable protection in AMI patients.
基金the Fund for National Outstanding Young Researchers of China
文摘AIM To explore the kinetic changes in plasma D(-)- lactate and lipopolyssccharide(LPS)levels,and investigate whether D(-)-lactate could be used as a marker of intestinal injury in rats following gut ischemia/ reperfusion,burn,and acute necrotizing pancreatitis (ANP). METHODS Three models were developed in rats:① gut ischemia/ reperfusion obtained by one hour of superior mesenteric artery occlusion followed by reperfusion;② severe burn injury created by 30% of total body surface area(TBSA)full-thickness scald burn;and ③ ANP induced by continuous inverse infusion of sodium taurocholate and trypsin into main pancreatic duct. Plasma levels of D(-)-lactate in systemic circulation and LPS in portal circulation were measured by enzymatic- spectrophotometric method and limulus amebocyte lysate (LAL)test kit,respectively.Tissue samples of intestine were taken for histological analysis. RESULTS One hour gut ischemia followed by reperfusion injuries resulted in a significant elevation in plasma D(-)- lactate and LPS levels,and there was a significant correlation between the plasma D(-)-lactate and LPS(r =0.719,P<0.05).The plasma concentrations of D(-)- lactate and LPS increased significantly at 6h postburn, and there was also a remarkable correlation between them (r = 0.877,P < 0.01).D(-)-lactate and LPS levels elevated significantly at 2h after ANP,with a similar significant correlation between the two levels(r = 0.798, P < 0.01 ).The desquamation of intestine villi and infiltration of inflammatory cells in the lamina propria were observed in all groups. CONCLUSION The changes of plasma D(-)-lactate levels in systemic blood paralleled with LPS levels in the portal vein blood.The measurement of plasma D(-)-lactate level may be a useful marker to assess the intestinal injury and to monitor an increase of intestinal permeability and endotoxemia following severe injuries in early stage.
基金supported by a grant from the Health and Family Planning Commission of Heilongjiang Province Research Project in China,No.2014-195the Education Department Science and Technology Foundation of Heilongjiang Province in China,No.12531741the Natural Science Foundation of Heilongjiang Province of China,No.H2015083
文摘Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administra- tion, and the most effective mode of administration for clinical treatment of cerebral ischemia/ reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine admin- istration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyl)oxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC 195 after cerebral ischemia were better than ligustrazine.
基金the Ministry of Science and Technology of China(2018YFC1312300)National Natural Science Foundation of China(81722016,81801182)+1 种基金Sichuan Science and Technology Program(2018JPT0037,2018SZ0190)China Postdoctoral Science Foundation(2017M623041)。
文摘Ischemia/reperfusion(I/R) is a pathological process that occurs in numerous organs throughout the human body, and it is frequently associated with severe cellular damage and death. Recently it has emerged that ferroptosis, a new form of regulated cell death that is caused by iron-dependent lipid peroxidation, plays a significantly detrimental role in many I/R models. In this review, we aim to revise the pathological process of I/R and then explore the molecular pathogenesis of ferroptosis. Furthermore,we aim to evaluate the role that ferroptosis plays in I/R, providing evidence to support the targeting of ferroptosis in the I/R pathway may present as a therapeutic intervention to alleviate ischemia/reperfusion injury(IRI) associated cell damage and death.
基金supported by the National Natural Science Foundation of China,No.81202625the Open Fund of Key Laboratory of Cardiovascular and Cerebrovascular Diseases Translational Medicine,China Three Gorges University,China,No.2016xnxg101
文摘Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPKm TOR signaling pathway regulates the activation of the autophagy pathway through the coordinated phosphorylation of ULK1. In this study, we investigated the mechanisms underlying the neuroprotective effect of puerarin and its role in modulating autophagy via the AMPK-m TOR-ULK1 signaling pathway in the rat middle cerebral artery occlusion model of cerebral ischemia/reperfusion injury. Rats were intraperitoneally injected with puerarin, 50 or 100 mg/kg, daily for 7 days. Then, 30 minutes after the final administration, rats were subjected to transient middle cerebral artery occlusion for 90 minutes. Then, after 24 hours of reperfusion, the Longa score and infarct volume were evaluated in each group. Autophagosome formation was observed by transmission electron microscopy. LC3, Beclin-1 p62, AMPK, m TOR and ULK1 protein expression levels were examined by immunofluorescence and western blot assay. Puerarin substantially reduced the Longa score and infarct volume, and it lessened autophagosome formation in the hippocampal CA1 area following cerebral ischemia/reperfusion injury in a dose-dependent manner. Pretreatment with puerarin(50 or 100 mg/kg) reduced Beclin-1 expression and the LC3-II/LC3-I ratio, as well as p-AMPK and p S317-ULK1 levels. In comparison, it increased p62 expression. Furthermore, puerarin at 100 mg/kg dramatically increased the levels of p-m TOR and p S757-ULK1 in the hippocampus on the ischemic side. Our findings suggest that puerarin alleviates autophagy by activating the APMK-m TOR-ULK1 signaling pathway. Thus, puerarin might have therapeutic potential for treating cerebral ischemia/reperfusion injury.
文摘Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery.Understanding the mechanisms of liver ischemia reperfusion injury(IRI) and developing strategies to counteract this injury will therefore reduce acute complications in hepatic resection and transplantation,as well as expanding the potential pool of usable donor grafts.The initial liver injury is initiated by reactive oxygen species which cause direct cellular injury and also activate a cascade of molecular mediators leading to microvascular changes,increased apoptosis and acute inflammatory changes with increased hepatocyte necrosis.Some adaptive pathways are activated during reperfusion that reduce the reperfusion injury.IRI involves a complex interplay between neutrophils,natural killer T-cells cells,CD4+ T cell subtypes,cytokines,nitric oxide synthases,haem oxygenase-1,survival kinases such as the signal transducer and activator of transcription,Phosphatidylinositol 3-kinases/Akt and nuclear factor κβ pathways.Transgenic animals,particularly genetic knockout models,have become a powerful tool at elucidating mechanisms of liver ischaemia reperfusion injury and are complementary to pharmacological studies.Targeted disruption of the protein at the genetic level is more specific and maintained than pharmacological inhibitors or stimulants of the same protein.This article reviews the evidence from knockout models of liver IRI about the cellular and molecular mechanisms underlying liver IRI.
文摘Ischemia/reperfusion injury is an unavoidable relevant consequence after kidney transplantation and influences short term as well as long-term graft outcome. Clinically ischemia/reperfusion injury is associated with delayed graft function, graft rejection, chronic rejection and chronic graft dysfunction. Ischemia/reperfusion affects many regulatory systems at the cellular level as well as in the renal tissue that result in a distinct inflammatory reaction of the kidney graft. Underlying factors of ischemia reperfusion include energy metabolism, cellular changes of the mitochondria and cellular membranes, initiation of different forms of cell death-like apoptosis and necrosis together with a recently discovered mixed form termed necroptosis. Chemokines and cytokines together with other factors promote the inflammatory response leading to activation of the innate immune system as well as the adaptive immune system. If the inflammatory reaction continues within the graft tissue, a progressive interstitial fibrosis develops that impacts long-term graft outcome. It is of particular importance in kidney transplantation to understand the underlying mechanisms and effects of ischemia/reperfusion on the graft as this knowledge also opens strategies to prevent or treat ischemia/reperfusion injury after transplantation in order to improve graft outcome.
文摘Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival and cell death, is involved in cerebral ischemia reperfusion injury and might be modulate by electroacupuncture therapy in key ways. This paper aims to provide novel insights into a therapeutic target of electroacupuncture against cerebral ischemia/reperfusion injury from the perspective of autophagy. Here we review recent studies on electroacupuncture regulation of autophagy-related markers such as UNC-51-like kinase-1 complex, Beclin1, microtubule-associated protein-1 light chain 3, p62, and autophagosomes for treating cerebral ischemia/reperfusion injury. The results of these studies show that electroacupuncture may affect the initiation of autophagy, vesicle nucleation, expansion and maturation of autophagosomes, as well as fusion and degradation of autophagolysosomes. Moreover, studies indicate that electroacupuncture probably modulates autophagy by activating the mammalian target of the rapamycin signaling pathway.This review thus indicates that autophagy is a therapeutic target of electroacupuncture treatment against ischemic cerebrovascular diseases.