In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. ...In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. The group-theoretical background with the 3-parameter group of motions M(2) in the plane for Bessel functions and of the Heisenberg-Weyl group W(2) for Parabolic Cylinder functions is discussed and compared with formulae, in particular, for the lowering and raising operators and the eigenvalue equations. Recurrence relations for the Associated Hermite polynomials and for their derivative and the differential equation for them are derived in detail. Explicit expressions for the Associated Hermite polynomials with involved Jacobi polynomials at argument zero are given and by means of them the Parabolic Cylinder functions are represented by two such basic functions.展开更多
Substitution boxes or S-boxes play a significant role in encryption and de-cryption of bit level plaintext and cipher-text respectively. Irreducible Poly-nomials (IPs) have been used to construct 4-bit or 8-bit substi...Substitution boxes or S-boxes play a significant role in encryption and de-cryption of bit level plaintext and cipher-text respectively. Irreducible Poly-nomials (IPs) have been used to construct 4-bit or 8-bit substitution boxes in many cryptographic block ciphers. In Advance Encryption Standard, the ele-ments of 8-bit S-box have been obtained from the Multiplicative Inverse (MI) of elemental polynomials (EPs) of the 1st IP over Galois field GF(28) by adding an additive element. In this paper, a mathematical method and the algorithm of the said method with the discussion of the execution time of the algorithm, to obtain monic IPs over Galois field GF(pq) have been illustrated with example. The method is very similar to polynomial multiplication of two polynomials over Galois field GF(pq) but has a difference in execution. The decimal equivalents of polynomials have been used to identify Basic Polynomials (BPs), EPs, IPs and Reducible polynomials (RPs). The monic RPs have been determined by this method and have been cancelled out to produce monic IPs. The non-monic IPs have been obtained with multiplication of α where?α∈ GF(pq)?and assume values from 2 to (p −1) to monic IPs.展开更多
This paper presents a criterion for the similarity of length-two elements in a noncommutative principal ideal domain. The criterion enables the authors to develop an algorithm for determining whether B1A1 and B2A2 are...This paper presents a criterion for the similarity of length-two elements in a noncommutative principal ideal domain. The criterion enables the authors to develop an algorithm for determining whether B1A1 and B2A2 are similar, where A1, A2, B1, B2 are first-order differential (difference) operators. The main step in the algorithm is to find a rational solution of a parametric differential (difference) Risch's equation, which has been well-studied in symbolic integration (summation).展开更多
The goal of this paper is to show that there are infinitely many number fields K/Q, for which there is no inert prime p ∈ N*, i.e. ∀p ∈ N* a prime number, prime ideal of K such that where: Zk</sub> i...The goal of this paper is to show that there are infinitely many number fields K/Q, for which there is no inert prime p ∈ N*, i.e. ∀p ∈ N* a prime number, prime ideal of K such that where: Zk</sub> is the Dedekind domain of the integer elements of K. To prove such a result, consider for any prime p, the decomposition into a product of prime ideals of Zk</sub>, of the ideal . From this point, we use on the one hand: 1) The well- known property that says: If , then the ideal pZ<sub>k</sub> decomposes into a product of prime ideals of Zk</sub> as following: . (where:;is the irreducible polynomial of θ, and, is its reduction modulo p, which leads to a product of irreducible polynomials in Fp[X]). It is clear that because if is reducible in Fp[X], then consequently p is not inert. Now, we prove the existence of such p, by proving explicit such p as follows. So we use on the other hand: 2) this property that we prove, and which is: If , is an irreducible normalized integer polynomial, whose splitting field is , then for any prime number p ∈ N: is always a reducible polynomial. 3) Consequently, and this closes our proof: let’s consider the set (whose cardinality is infinite) of monogenic biquadratic number fields: . Then each f<sub>θ</sub>(X) checks the above properties, this means that for family M, all its fields, do not admit any inert prime numbers p ∈ N. 2020-Mathematics Subject Classification (MSC2020) 11A41 - 11A51 - 11D25 - 11R04 - 11R09 - 11R11 - 11R16 - 11R32 - 11T06 - 12E05 - 12F05 -12F10 -13A05-13A15 - 13B02 - 13B05 - 13B10 - 13B25 -13F05展开更多
文摘In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. The group-theoretical background with the 3-parameter group of motions M(2) in the plane for Bessel functions and of the Heisenberg-Weyl group W(2) for Parabolic Cylinder functions is discussed and compared with formulae, in particular, for the lowering and raising operators and the eigenvalue equations. Recurrence relations for the Associated Hermite polynomials and for their derivative and the differential equation for them are derived in detail. Explicit expressions for the Associated Hermite polynomials with involved Jacobi polynomials at argument zero are given and by means of them the Parabolic Cylinder functions are represented by two such basic functions.
文摘Substitution boxes or S-boxes play a significant role in encryption and de-cryption of bit level plaintext and cipher-text respectively. Irreducible Poly-nomials (IPs) have been used to construct 4-bit or 8-bit substitution boxes in many cryptographic block ciphers. In Advance Encryption Standard, the ele-ments of 8-bit S-box have been obtained from the Multiplicative Inverse (MI) of elemental polynomials (EPs) of the 1st IP over Galois field GF(28) by adding an additive element. In this paper, a mathematical method and the algorithm of the said method with the discussion of the execution time of the algorithm, to obtain monic IPs over Galois field GF(pq) have been illustrated with example. The method is very similar to polynomial multiplication of two polynomials over Galois field GF(pq) but has a difference in execution. The decimal equivalents of polynomials have been used to identify Basic Polynomials (BPs), EPs, IPs and Reducible polynomials (RPs). The monic RPs have been determined by this method and have been cancelled out to produce monic IPs. The non-monic IPs have been obtained with multiplication of α where?α∈ GF(pq)?and assume values from 2 to (p −1) to monic IPs.
基金supported by a 973 key project under Grant No.2004CB318000the National Natural Science Foundation under Grant No.76596100
文摘This paper presents a criterion for the similarity of length-two elements in a noncommutative principal ideal domain. The criterion enables the authors to develop an algorithm for determining whether B1A1 and B2A2 are similar, where A1, A2, B1, B2 are first-order differential (difference) operators. The main step in the algorithm is to find a rational solution of a parametric differential (difference) Risch's equation, which has been well-studied in symbolic integration (summation).
文摘The goal of this paper is to show that there are infinitely many number fields K/Q, for which there is no inert prime p ∈ N*, i.e. ∀p ∈ N* a prime number, prime ideal of K such that where: Zk</sub> is the Dedekind domain of the integer elements of K. To prove such a result, consider for any prime p, the decomposition into a product of prime ideals of Zk</sub>, of the ideal . From this point, we use on the one hand: 1) The well- known property that says: If , then the ideal pZ<sub>k</sub> decomposes into a product of prime ideals of Zk</sub> as following: . (where:;is the irreducible polynomial of θ, and, is its reduction modulo p, which leads to a product of irreducible polynomials in Fp[X]). It is clear that because if is reducible in Fp[X], then consequently p is not inert. Now, we prove the existence of such p, by proving explicit such p as follows. So we use on the other hand: 2) this property that we prove, and which is: If , is an irreducible normalized integer polynomial, whose splitting field is , then for any prime number p ∈ N: is always a reducible polynomial. 3) Consequently, and this closes our proof: let’s consider the set (whose cardinality is infinite) of monogenic biquadratic number fields: . Then each f<sub>θ</sub>(X) checks the above properties, this means that for family M, all its fields, do not admit any inert prime numbers p ∈ N. 2020-Mathematics Subject Classification (MSC2020) 11A41 - 11A51 - 11D25 - 11R04 - 11R09 - 11R11 - 11R16 - 11R32 - 11T06 - 12E05 - 12F05 -12F10 -13A05-13A15 - 13B02 - 13B05 - 13B10 - 13B25 -13F05