Fe-N compounds with excellent electrocatalytic oxygen reduction activity are considered to be one of the most promising non-precious metal materials for fuel cells.Fe-N compounds with excellent electrocatalytic oxygen...Fe-N compounds with excellent electrocatalytic oxygen reduction activity are considered to be one of the most promising non-precious metal materials for fuel cells.Fe-N compounds with excellent electrocatalytic oxygen reduction activity are considered to be one of the most promising non-precious metal materials for fuel cells,which focuses on the Fe-N4 single-atom catalysts and the iron nitride materials(such as Fe2N and Fe3N).A hybridized catalyst having a hierarchical porous structure with regular macropores could enable the desired mass transfer efficiency in the catalytic process.In this study,we have constructed a new type of hybrid catalyst having iron and iron-nitrogen alloy nanoparticles(Fe-N austenite,termed as Fe-NA)embedded in the three-dimensional ordered macroporous N-doped carbon(3DOM Fe/Fe-NA@NC)by direct pyrolysis of single-source dicyandiamide-based iron metal-organic frameworks.The as-synthesized composites preserve the hierarchical porous carbon framework with ordered macropores and high specific surface area,incorporating the uniformly dispersed iron/iron-nitrogen austenite nanoparticles.Thereby,the striking architectural configuration embedded with highly active catalytic species delivers a superior oxygen reduction activity with a half-wave potential of 0.88 V and a subsequent superior Zn-air battery performance with high open-circuit voltage and continuous stability as compared to those using a commercial 20%Pt/C catalyst.展开更多
The naturally lackadaisical kinetics of oxygen reduction reaction(ORR)in the cathode is one of the important factors that restrict the development of air-cathode microbial fuel cells(MFCs).In this work,the iron-nitrog...The naturally lackadaisical kinetics of oxygen reduction reaction(ORR)in the cathode is one of the important factors that restrict the development of air-cathode microbial fuel cells(MFCs).In this work,the iron-nitrogen-carbon hierarchically nanostructured materials had been successfully fabricated by pyrolyzing glucose,iron chloride,and dicyandiamide with the aim of solving the issue.The obtained catalyst with an ultrathin nanostructure demonstrated an idiosyncratic electrocatalytic activity caused by the high content introduction of nitrogen and iron atoms,large surface area,which will offer sufficient active sites for improving the charge/mass transfer and reducing the diffusion resistance.Furthermore,with the increase of N dopant in the catalyst,better ORR catalytic activity could be achieved.Illustrating the N doping was beneficial to the ORR process.The high content of N,BET surface area caused by the N increasing could be responsible for the superior performance according to results of X-Ray photoelectron spectroscopy(XPS),Raman and Brunner-Emmet-Teller(BET)analysis.The ORR on the Fe-N3/C material follows 4e−pathway,and MFCs equipped with Fe-N3/C catalyst achieved a maximum power density(MPD)of 912 mW/m2,which was 1.1 times of the MPD generated by the commercial Pt/C(830 mW/m2).This research not only provided a feasible way for the fabrication of Pt-free catalyst towards oxygen reduction but also proposed potential cathode catalysts for the development of MFCs.展开更多
Efficient oxygen electrocatalysts are the key elements of numerous energy storage and conversion devices, including fuel cells and metal-air batteries. In order to realize their practical applications, highly efficien...Efficient oxygen electrocatalysts are the key elements of numerous energy storage and conversion devices, including fuel cells and metal-air batteries. In order to realize their practical applications, highly efficient and inexpensive non-noble metal-based oxygen electrocatalysts are urgently required. Herein, we report a novel iron-chelated urea-formaldehyde resin hydrogel for the synthesis of Fe-N-C electrocatalysts. This novel hydrogel is prepared using a new instantaneous (20 s) one-step scalable strategy, which theoretically ensures the atomic-level dispersion of Fe ions in the urea-formaldehyde resin, guaranteeing the microstructural homogeneity of the electrocatalyst. Consequentl~ the prepared electrocatalyst exhibits higher catalytic activity and durability in the oxygen reduction (ORR) and evolution (OER) reactions than the commercial Pt/C catalyst. Furthermore, the above catalyst also shows a much better performance in rechargeable Zn-air batteries, including higher power density and better cycling stability. The developed synthetic approach opens up new avenues toward the development of sustainable active electrocatalysts for electrochemical energy devices.展开更多
Developing nonprecious carbon electrocatalysts as alternatives to platinum for cathodic oxygen reduction reaction in fuel cells is of signifi- cance. Herein, an efficient precursor-controlled synthesis strategy based ...Developing nonprecious carbon electrocatalysts as alternatives to platinum for cathodic oxygen reduction reaction in fuel cells is of signifi- cance. Herein, an efficient precursor-controlled synthesis strategy based on extremely rapid nucleation and deposition process assisted by the liquid nitrogen freeze drying method is explored to anchor cheap iron-EDTA complex evenly dispersed on graphene to realize mJcrostructural homogeneity of the derived Fe-N-C oxygen reduction electrocatalyst. The prepared electrocatatyst possesses excellent performance including high activity with more positive onset and half-wave potential, a long-term stability, and anti-poisoning effect compared to commercial Pt/C. The activity correlates well with the unique sheet-shaped morphology, high surface area, hierarchical porous structure, and the introduction of Fe-Nx/C species. Especially, both the assembled practical alkaline and acid fuel cells based on the synthesized cathode catalysts reveal excellent performance with high open-circuit voltage and power density.展开更多
文摘Fe-N compounds with excellent electrocatalytic oxygen reduction activity are considered to be one of the most promising non-precious metal materials for fuel cells.Fe-N compounds with excellent electrocatalytic oxygen reduction activity are considered to be one of the most promising non-precious metal materials for fuel cells,which focuses on the Fe-N4 single-atom catalysts and the iron nitride materials(such as Fe2N and Fe3N).A hybridized catalyst having a hierarchical porous structure with regular macropores could enable the desired mass transfer efficiency in the catalytic process.In this study,we have constructed a new type of hybrid catalyst having iron and iron-nitrogen alloy nanoparticles(Fe-N austenite,termed as Fe-NA)embedded in the three-dimensional ordered macroporous N-doped carbon(3DOM Fe/Fe-NA@NC)by direct pyrolysis of single-source dicyandiamide-based iron metal-organic frameworks.The as-synthesized composites preserve the hierarchical porous carbon framework with ordered macropores and high specific surface area,incorporating the uniformly dispersed iron/iron-nitrogen austenite nanoparticles.Thereby,the striking architectural configuration embedded with highly active catalytic species delivers a superior oxygen reduction activity with a half-wave potential of 0.88 V and a subsequent superior Zn-air battery performance with high open-circuit voltage and continuous stability as compared to those using a commercial 20%Pt/C catalyst.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51806224)Natural Science Foundation of Guangdong Province(Grant No.2017A030310280)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21050400)the China Postdoctoral Science Foundation(Grant No.2018M631899)The authors acknowledge the care and spiritual support from Gaixiu Yang over the past two years.
文摘The naturally lackadaisical kinetics of oxygen reduction reaction(ORR)in the cathode is one of the important factors that restrict the development of air-cathode microbial fuel cells(MFCs).In this work,the iron-nitrogen-carbon hierarchically nanostructured materials had been successfully fabricated by pyrolyzing glucose,iron chloride,and dicyandiamide with the aim of solving the issue.The obtained catalyst with an ultrathin nanostructure demonstrated an idiosyncratic electrocatalytic activity caused by the high content introduction of nitrogen and iron atoms,large surface area,which will offer sufficient active sites for improving the charge/mass transfer and reducing the diffusion resistance.Furthermore,with the increase of N dopant in the catalyst,better ORR catalytic activity could be achieved.Illustrating the N doping was beneficial to the ORR process.The high content of N,BET surface area caused by the N increasing could be responsible for the superior performance according to results of X-Ray photoelectron spectroscopy(XPS),Raman and Brunner-Emmet-Teller(BET)analysis.The ORR on the Fe-N3/C material follows 4e−pathway,and MFCs equipped with Fe-N3/C catalyst achieved a maximum power density(MPD)of 912 mW/m2,which was 1.1 times of the MPD generated by the commercial Pt/C(830 mW/m2).This research not only provided a feasible way for the fabrication of Pt-free catalyst towards oxygen reduction but also proposed potential cathode catalysts for the development of MFCs.
文摘Efficient oxygen electrocatalysts are the key elements of numerous energy storage and conversion devices, including fuel cells and metal-air batteries. In order to realize their practical applications, highly efficient and inexpensive non-noble metal-based oxygen electrocatalysts are urgently required. Herein, we report a novel iron-chelated urea-formaldehyde resin hydrogel for the synthesis of Fe-N-C electrocatalysts. This novel hydrogel is prepared using a new instantaneous (20 s) one-step scalable strategy, which theoretically ensures the atomic-level dispersion of Fe ions in the urea-formaldehyde resin, guaranteeing the microstructural homogeneity of the electrocatalyst. Consequentl~ the prepared electrocatalyst exhibits higher catalytic activity and durability in the oxygen reduction (ORR) and evolution (OER) reactions than the commercial Pt/C catalyst. Furthermore, the above catalyst also shows a much better performance in rechargeable Zn-air batteries, including higher power density and better cycling stability. The developed synthetic approach opens up new avenues toward the development of sustainable active electrocatalysts for electrochemical energy devices.
基金This work was financially supported by Ministry of Science and Technology of China (Nos. 2026YFB0200203 and 2017YFA0206704), National Program on Key Basic Research Project of China (No. 2014CB932300), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09010404), Technology and Industry for National Defense of China (No. JCKY2026130B010),and National Natural Science Foundation of China (Nos. 51771177, 21422108 and 51472232).
文摘Developing nonprecious carbon electrocatalysts as alternatives to platinum for cathodic oxygen reduction reaction in fuel cells is of signifi- cance. Herein, an efficient precursor-controlled synthesis strategy based on extremely rapid nucleation and deposition process assisted by the liquid nitrogen freeze drying method is explored to anchor cheap iron-EDTA complex evenly dispersed on graphene to realize mJcrostructural homogeneity of the derived Fe-N-C oxygen reduction electrocatalyst. The prepared electrocatatyst possesses excellent performance including high activity with more positive onset and half-wave potential, a long-term stability, and anti-poisoning effect compared to commercial Pt/C. The activity correlates well with the unique sheet-shaped morphology, high surface area, hierarchical porous structure, and the introduction of Fe-Nx/C species. Especially, both the assembled practical alkaline and acid fuel cells based on the synthesized cathode catalysts reveal excellent performance with high open-circuit voltage and power density.