Nanomaterials are increasingly used for biomedical applications; thus, it is important to understand their biological effects. Previous studies suggested that magnetic iron oxide nanoparticles (IONPs) have tissue-re...Nanomaterials are increasingly used for biomedical applications; thus, it is important to understand their biological effects. Previous studies suggested that magnetic iron oxide nanoparticles (IONPs) have tissue-repairing effects. In the present study, we explored cellular effects of IONPs in mesenchymal stem cells (MSCs) and identified the underlying molecular mechanisms. The results showed that our as-prepared IONPs were structurally stable in MSCs and promoted osteogenic differentiation of MSCs as whole particles. Moreover, at the molecular level, we compared the gene expression of MSCs with or without IONP exposure and showed that IONPs upregulated long noncoding RNA INZEB2, which is indispensable for maintaining osteogenesis by MSCs. Furthermore, overexpression of INZEB2 downregulated ZEB2, a factor necessary to repress BMP/Smad- dependent osteogenic transcription. We also demonstrated that the essential role of INZEB2 in osteogenic differentiation was ZEB2-dependent. In summary, we elucidated the molecular basis of IONPs' effects on MSCs; these findings may serve as a meaningful theoretical foundation for applications of stem cells to regenerative medicine.展开更多
In recent decades, magnetic iron nanoparticles (NPs) have attracted much attention due to properties such as superparamagnetism, high surface area, large surface-to-volume ratio, and easy separation under external m...In recent decades, magnetic iron nanoparticles (NPs) have attracted much attention due to properties such as superparamagnetism, high surface area, large surface-to-volume ratio, and easy separation under external magnetic fields. Therefore, magnetic iron oxides have potential for use in numerous applications, including magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, drug delivery, hyperthermia, and cell separation. This review provides an updated and integrated focus on the fabrication and characterization of suitable magnetic iron NPs for biotechnological applications. The possible perspective and some challenges in the further development of these NPs are also discussed.展开更多
Magnetic iron oxide nanoparticles are synthesized by suitable modification of the standard synthetic procedure without use of inert atmosphere and at room temperature. The facile synthesis procedure can be easily scal...Magnetic iron oxide nanoparticles are synthesized by suitable modification of the standard synthetic procedure without use of inert atmosphere and at room temperature. The facile synthesis procedure can be easily scaled up and is of important from industrial point of view for the commercial large scale production of magnetic iron oxide nanoparticles. The synthesized nanoparticles were characterized by thermal, dynamic light scattering, scanning electron microscopy and transmission electron microscopy analyses.展开更多
文摘Nanomaterials are increasingly used for biomedical applications; thus, it is important to understand their biological effects. Previous studies suggested that magnetic iron oxide nanoparticles (IONPs) have tissue-repairing effects. In the present study, we explored cellular effects of IONPs in mesenchymal stem cells (MSCs) and identified the underlying molecular mechanisms. The results showed that our as-prepared IONPs were structurally stable in MSCs and promoted osteogenic differentiation of MSCs as whole particles. Moreover, at the molecular level, we compared the gene expression of MSCs with or without IONP exposure and showed that IONPs upregulated long noncoding RNA INZEB2, which is indispensable for maintaining osteogenesis by MSCs. Furthermore, overexpression of INZEB2 downregulated ZEB2, a factor necessary to repress BMP/Smad- dependent osteogenic transcription. We also demonstrated that the essential role of INZEB2 in osteogenic differentiation was ZEB2-dependent. In summary, we elucidated the molecular basis of IONPs' effects on MSCs; these findings may serve as a meaningful theoretical foundation for applications of stem cells to regenerative medicine.
文摘In recent decades, magnetic iron nanoparticles (NPs) have attracted much attention due to properties such as superparamagnetism, high surface area, large surface-to-volume ratio, and easy separation under external magnetic fields. Therefore, magnetic iron oxides have potential for use in numerous applications, including magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, drug delivery, hyperthermia, and cell separation. This review provides an updated and integrated focus on the fabrication and characterization of suitable magnetic iron NPs for biotechnological applications. The possible perspective and some challenges in the further development of these NPs are also discussed.
文摘Magnetic iron oxide nanoparticles are synthesized by suitable modification of the standard synthetic procedure without use of inert atmosphere and at room temperature. The facile synthesis procedure can be easily scaled up and is of important from industrial point of view for the commercial large scale production of magnetic iron oxide nanoparticles. The synthesized nanoparticles were characterized by thermal, dynamic light scattering, scanning electron microscopy and transmission electron microscopy analyses.
基金Supported by the National Natural Science Foundation of China(20773037,21073058)the Research Fund for the Doctoral Program of Higher Education of China(20100074110014)the Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education,Hubei Province,South-Central University for Nationalities(CHCL10001),China