Lithium-iron manganese phosphates(LiFex Mn_(1-x)PO_(4),0.1<x<0.9)have the merits of high safety and high working voltage.However,they also face the challenges of insufficient conductivity and poor cycling stabil...Lithium-iron manganese phosphates(LiFex Mn_(1-x)PO_(4),0.1<x<0.9)have the merits of high safety and high working voltage.However,they also face the challenges of insufficient conductivity and poor cycling stability.Some progress has been achieved to solve these problems.Herein,we firstly summarized the influence of different electrolyte systems on the electrochemical performance of LiFexMn_(1-x)PO_(4),and then discussed the effect of element doping,lastly studied the influences of conductive layer coating and morphology control on the cycling stability.Finally,the prospects and challenges of developing high-cycling LiFexMn_(1-x)PO_(4) were proposed.展开更多
Nanometer-size zero-valent iron(NZVI)is an efficient reducing agent,but its surface is easily passivated with an oxide layer,leading to reaction inefficiency.In our study,oxalate(OA)was introduced into this heterogene...Nanometer-size zero-valent iron(NZVI)is an efficient reducing agent,but its surface is easily passivated with an oxide layer,leading to reaction inefficiency.In our study,oxalate(OA)was introduced into this heterogeneous system of NZVI,which could form ferrioxalate complexes with the NZVI surface-bound Fe3+and dissolved Fe3+in the solution.Photolysis of ferrioxalate complexes can facilitate the generation of Fe2+from Fe3+and CO2·-radical,both species have strong reduction capacity.Hence,a"photo-oxalate-Fe(0)"system through sunlight induction was established,which not only prohibited the formation of a surface passivation layer,but also displayed a synergetic mechanism of ferrioxalate photolysis to enhance reduction,exhibiting remarkably higher degradation activity(several times faster)toward the model pollutant Cr(Ⅵ)than the mechanism with NZVI alone.Factor tests suggested that both NZVI dosage and OA content markedly affected the reduction rate.Low pH was beneficial to the reduction efficiency.Moreover,recyclability experiment showed that the reduction rate decreased from 0.21706 to 0.03977 min-1 after three cycles of reuse due to the NZVI losing reaction activity generally,but the system still maintained considerable reduction capacity.Finally,a mechanism was revealed whereby NZVI would transform to Fe oxides after the exhaustion of its reductive power,and the photolysis of ferrioxalate to promote the cycling of iron species played the predominant role in providing extra reduction ability.These features confirm that introduction of OA into Cr(Ⅵ)reduction by NZVI through sunlight induction is advantageous and promising.展开更多
Dissimilatory iron reduction(DIR)coupled with carbon cycling is increasingly being recognized as an influential process in freshwater wetland soils and sediments.The role of DIR in organic matter(OM)mineralization,how...Dissimilatory iron reduction(DIR)coupled with carbon cycling is increasingly being recognized as an influential process in freshwater wetland soils and sediments.The role of DIR in organic matter(OM)mineralization,however,is still largely unknown in lake sediment environments.In this study,we clarified rates and pathways of OM mineralization in two shallow lakes with seasonal hydrological connectivity and different eutrophic situations.We found that in comparison with the domination of DIR(55%)for OM mineralization in Lake Xiaoxingkai,the contribution of methanogenesis was much higher(68%)in its connected lake(Lake Xingkai).The differences in rates and pathways of sediment OM mineralization between the two lakes were attributed to higher concentrations of carbonate associated iron oxides(Fecarb)in Lake Xiaoxingkai compared to Lake Xingkai(P=0.002),due to better deposition mixing,more contributions of terrigenous detrital materials,and higher OM content in Lake Xiaoxingkai.Results of structural equation modeling showed that Fecarb and total iron content(TFe)regulated 25%of DIR in Lake Xiaoxingkai and 76%in Lake Xingkai,accompanied by a negative effect of TFe on methanogenesis in Lake Xingkai.The relative abundance and diversity of Fe-reducing bacteria were significantly different between the two lakes,and showed a weak effect on sediment OM mineralization.Our findings emphasize the role of iron minerals and geochemical characterizations in regulating rates and pathways of OM mineralization,and deepen the understanding of carbon cycling in lake sediments.展开更多
To address the insulating nature and the shuttle effect of iodide species that would deteriorate the battery performance,herein iron nitride is well-dispersed into porous carbon fibers with good flexibility via the fa...To address the insulating nature and the shuttle effect of iodide species that would deteriorate the battery performance,herein iron nitride is well-dispersed into porous carbon fibers with good flexibility via the facile electrospinning method and subsequent pyrolysis.The polyacrylonitrile precursor introduces the nitrogen doping under thermal treatment while the addition of iron acetylacetonate leads to the insitu formation of iron nitride among the carbon matrix.The crucial pyrolysis procedure is adjustable to determine the hierarchical porous structure and final composition of the novel carbon fiber composites.As the self-supporting electrode for loading iodine,the zinc-iodine battery exhibits a large specific capacity of 214 mAh/g and good cycling stability over 1600 h.In the combination of in-situ/ex-situ experimental measurements with the theoretical analysis,the in-depth understanding of intrinsic interaction between composited support and iodine species elucidates the essential mechanism to promote the redox kinetics of iodine via the anchoring effect and electrocatalytic conversion,thus improving cycling life and rate performance.Such fundamental principles on the basic redox conversion of iodine species would evoke the rational design of advanced iodine-based electrodes for improving battery performance.展开更多
Electron shuttles such cysteine play an important role in Fe cycle and its availability in soils,while the roles of pH and organic ligands in this process are poorly understood.Herein,the reductive dissolution process...Electron shuttles such cysteine play an important role in Fe cycle and its availability in soils,while the roles of pH and organic ligands in this process are poorly understood.Herein,the reductive dissolution process of goethite by cysteine were explored in the presence of organic ligands.Our results showed that cysteine exhibited a strong reactivity towards goethite-a typical iron minerals in paddy soils with a rate constant ranging from 0.01 to0.1 hr^(-1).However,a large portion of Fe(Ⅱ) appeared to be "structural species" retained on the surface.The decline of pH was favorable to generate more Fe(Ⅱ) ions and enhancing tendency of Fe(Ⅱ) release to solution.The decline of generation of Fe(Ⅱ) by increasing pH was likely to be caused by a lower redox potential and the nature of cysteine pH-dependent adsorption towards goethite.Interestingly,the co-existence of oxalate and citrate ligands also enhanced the rate constant of Fe(Ⅱ) release from 0.09 to 0.15 hr-1;nevertheless,they negligibly affected the overall generation of Fe(Ⅱ) in opposition to the pH effect.Further spectroscopic evidence demonstrated that two molecules of cysteine could form disulfide bonds(S-S) to generate cystine through oxidative dehydration,and subsequently,inducing electron transfer from cysteine to the structural Fe(Ⅲ) on goethite;meanwhile,those organic ligands act as Fe(Ⅱ) "strippers".The findings of this work provide new insights into the understanding of the different roles of pH and organic ligands on the generation and release of Fe induced by electron shuttles in soils.展开更多
It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure p...It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure parameter of the reactor, which has a great effect on the reaction efficiency. In this study, the computational fluid dynamics simulation method was used to determine the influence of reactor structure on flow field, and a volume-offluid model was employed to simulate the gas–liquid, two-phase flow of the internal-loop micro-electrolysis reactor. Hydrodynamic factors were optimized when the height-to-diameter ratio was 4:1, diameter ratio was9:1, draft-tube axial height was 90 mm. Three-dimensional simulations for the water distributor were carried out, and the results suggested that the optimal conditions are as follows: the number of water distribution pipes was four, and an inhomogeneous water distribution was used. According to the results of the simulation,the suitable structure can be used to achieve good fluid mechanical properties, such as the good liquid circulation velocity and gas holdup, which provides a good theoretical foundation for the application of the reactor.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51971090 and U21A20311)。
文摘Lithium-iron manganese phosphates(LiFex Mn_(1-x)PO_(4),0.1<x<0.9)have the merits of high safety and high working voltage.However,they also face the challenges of insufficient conductivity and poor cycling stability.Some progress has been achieved to solve these problems.Herein,we firstly summarized the influence of different electrolyte systems on the electrochemical performance of LiFexMn_(1-x)PO_(4),and then discussed the effect of element doping,lastly studied the influences of conductive layer coating and morphology control on the cycling stability.Finally,the prospects and challenges of developing high-cycling LiFexMn_(1-x)PO_(4) were proposed.
基金supported by Project funded by China Postdoctoral Science Foundation(No.2017M611533)
文摘Nanometer-size zero-valent iron(NZVI)is an efficient reducing agent,but its surface is easily passivated with an oxide layer,leading to reaction inefficiency.In our study,oxalate(OA)was introduced into this heterogeneous system of NZVI,which could form ferrioxalate complexes with the NZVI surface-bound Fe3+and dissolved Fe3+in the solution.Photolysis of ferrioxalate complexes can facilitate the generation of Fe2+from Fe3+and CO2·-radical,both species have strong reduction capacity.Hence,a"photo-oxalate-Fe(0)"system through sunlight induction was established,which not only prohibited the formation of a surface passivation layer,but also displayed a synergetic mechanism of ferrioxalate photolysis to enhance reduction,exhibiting remarkably higher degradation activity(several times faster)toward the model pollutant Cr(Ⅵ)than the mechanism with NZVI alone.Factor tests suggested that both NZVI dosage and OA content markedly affected the reduction rate.Low pH was beneficial to the reduction efficiency.Moreover,recyclability experiment showed that the reduction rate decreased from 0.21706 to 0.03977 min-1 after three cycles of reuse due to the NZVI losing reaction activity generally,but the system still maintained considerable reduction capacity.Finally,a mechanism was revealed whereby NZVI would transform to Fe oxides after the exhaustion of its reductive power,and the photolysis of ferrioxalate to promote the cycling of iron species played the predominant role in providing extra reduction ability.These features confirm that introduction of OA into Cr(Ⅵ)reduction by NZVI through sunlight induction is advantageous and promising.
基金the Key Program of the National Natural Science Foundation of China(42230516)National Natural Science Foundation of China(42271129,42101071,42171107)+2 种基金Natural Science Foundation of Jilin Province(YDZJ202201ZYTS480)Jilin Province Education Department Science and Technology Research Project(JJKH20210289KJ)International Wetlands Research League,Alliance of International Science Organizations(ANSO-PA-2020-14).
文摘Dissimilatory iron reduction(DIR)coupled with carbon cycling is increasingly being recognized as an influential process in freshwater wetland soils and sediments.The role of DIR in organic matter(OM)mineralization,however,is still largely unknown in lake sediment environments.In this study,we clarified rates and pathways of OM mineralization in two shallow lakes with seasonal hydrological connectivity and different eutrophic situations.We found that in comparison with the domination of DIR(55%)for OM mineralization in Lake Xiaoxingkai,the contribution of methanogenesis was much higher(68%)in its connected lake(Lake Xingkai).The differences in rates and pathways of sediment OM mineralization between the two lakes were attributed to higher concentrations of carbonate associated iron oxides(Fecarb)in Lake Xiaoxingkai compared to Lake Xingkai(P=0.002),due to better deposition mixing,more contributions of terrigenous detrital materials,and higher OM content in Lake Xiaoxingkai.Results of structural equation modeling showed that Fecarb and total iron content(TFe)regulated 25%of DIR in Lake Xiaoxingkai and 76%in Lake Xingkai,accompanied by a negative effect of TFe on methanogenesis in Lake Xingkai.The relative abundance and diversity of Fe-reducing bacteria were significantly different between the two lakes,and showed a weak effect on sediment OM mineralization.Our findings emphasize the role of iron minerals and geochemical characterizations in regulating rates and pathways of OM mineralization,and deepen the understanding of carbon cycling in lake sediments.
基金financially supported by the National Natural Science Foundation of China(No.22175108)the Natural Scientific Foundation of Shandong Province(Nos.ZR2020JQ09 and ZR2022ZD27)Taishan Scholars Program of Shandong Province,Project for Scientific Research Innovation Team of Young Scholar in Colleges,Universities of Shandong Province(No.2019KJC025).
文摘To address the insulating nature and the shuttle effect of iodide species that would deteriorate the battery performance,herein iron nitride is well-dispersed into porous carbon fibers with good flexibility via the facile electrospinning method and subsequent pyrolysis.The polyacrylonitrile precursor introduces the nitrogen doping under thermal treatment while the addition of iron acetylacetonate leads to the insitu formation of iron nitride among the carbon matrix.The crucial pyrolysis procedure is adjustable to determine the hierarchical porous structure and final composition of the novel carbon fiber composites.As the self-supporting electrode for loading iodine,the zinc-iodine battery exhibits a large specific capacity of 214 mAh/g and good cycling stability over 1600 h.In the combination of in-situ/ex-situ experimental measurements with the theoretical analysis,the in-depth understanding of intrinsic interaction between composited support and iodine species elucidates the essential mechanism to promote the redox kinetics of iodine via the anchoring effect and electrocatalytic conversion,thus improving cycling life and rate performance.Such fundamental principles on the basic redox conversion of iodine species would evoke the rational design of advanced iodine-based electrodes for improving battery performance.
基金supported by the National Natural Science Foundation of China (Nos.42077301,21876161)the National Key Research and Development Project of China (No.2020YFC1808702)Guangdong Academy of Sciences’Project (No.2019GDASYL-0102006).
文摘Electron shuttles such cysteine play an important role in Fe cycle and its availability in soils,while the roles of pH and organic ligands in this process are poorly understood.Herein,the reductive dissolution process of goethite by cysteine were explored in the presence of organic ligands.Our results showed that cysteine exhibited a strong reactivity towards goethite-a typical iron minerals in paddy soils with a rate constant ranging from 0.01 to0.1 hr^(-1).However,a large portion of Fe(Ⅱ) appeared to be "structural species" retained on the surface.The decline of pH was favorable to generate more Fe(Ⅱ) ions and enhancing tendency of Fe(Ⅱ) release to solution.The decline of generation of Fe(Ⅱ) by increasing pH was likely to be caused by a lower redox potential and the nature of cysteine pH-dependent adsorption towards goethite.Interestingly,the co-existence of oxalate and citrate ligands also enhanced the rate constant of Fe(Ⅱ) release from 0.09 to 0.15 hr-1;nevertheless,they negligibly affected the overall generation of Fe(Ⅱ) in opposition to the pH effect.Further spectroscopic evidence demonstrated that two molecules of cysteine could form disulfide bonds(S-S) to generate cystine through oxidative dehydration,and subsequently,inducing electron transfer from cysteine to the structural Fe(Ⅲ) on goethite;meanwhile,those organic ligands act as Fe(Ⅱ) "strippers".The findings of this work provide new insights into the understanding of the different roles of pH and organic ligands on the generation and release of Fe induced by electron shuttles in soils.
基金Supported by the National Natural Science Foundation of China(21677018)Jointly Projects of Beijing Natural Science Foundation and Beijing Municipal Education Commission(KZ201810017024)
文摘It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure parameter of the reactor, which has a great effect on the reaction efficiency. In this study, the computational fluid dynamics simulation method was used to determine the influence of reactor structure on flow field, and a volume-offluid model was employed to simulate the gas–liquid, two-phase flow of the internal-loop micro-electrolysis reactor. Hydrodynamic factors were optimized when the height-to-diameter ratio was 4:1, diameter ratio was9:1, draft-tube axial height was 90 mm. Three-dimensional simulations for the water distributor were carried out, and the results suggested that the optimal conditions are as follows: the number of water distribution pipes was four, and an inhomogeneous water distribution was used. According to the results of the simulation,the suitable structure can be used to achieve good fluid mechanical properties, such as the good liquid circulation velocity and gas holdup, which provides a good theoretical foundation for the application of the reactor.