In the metallurgical industries, it is very important to characterize the flow of molten metals in open channels given that they are transported through these devices to different plant sections. Howeve...In the metallurgical industries, it is very important to characterize the flow of molten metals in open channels given that they are transported through these devices to different plant sections. However, unlike the flow of water which has been studied since ancient times, the flow of molten metals in open channels has received little attention. The unsteady non-uniform flow of blast furnace molten pig iron in a rectangular open channel is analyzed in this work by numerical solution of the Saint-Venant equations. The influence of mesh size on the convergence of molten metal height is studied to determine the proper mesh and time step sizes. A sinusoidal inflow pulse is imposed at the entrance of the channel in order to analyze the propagation of the resulting wave. The influence of the angle of inclination of the channel and the roughness coefficient of the walls on the amplitude and the dynamic behavior of the height of the molten metal are analyzed. Phase portraits of the channel state variables are constructed and interpreted. Numerical simulations show that as the angle of inclination of the channel increases, the amplitude of the formed wave decreases. From 10 degrees onwards, the peak of the wave descends even below the initial height. On the other hand, the roughness coefficient affects the molten pig iron height profiles in an inverse way than the angle of inclination. The amplitude of the formed wave increases as the roughness coefficient increases.展开更多
Iron overload can lead to iron deposits in many tissues,particularly in the heart.It has also been shown to be associated with elevated oxidative stress in tissues.Elevated cardiac iron deposits can lead to iron overl...Iron overload can lead to iron deposits in many tissues,particularly in the heart.It has also been shown to be associated with elevated oxidative stress in tissues.Elevated cardiac iron deposits can lead to iron overload cardiomyopathy,a condition which provokes mortality due to heart failure in iron-overloaded patients.Currently,the mechanism of iron uptake into cardiomyocytes is still not clearly understood.Growing evidence suggests L-type Ca2+channels(LTCCs)as a possible pathway for ferrous iron(Fe2+)uptake into cardiomyocytes under iron overload conditions.Nevertheless,controversy still exists since some findings on pharmacological interventions and those using different cell types do not support LTCC’s role as a portal for iron uptake in cardiac cells.Recently,T-type Ca2+channels (TTCC)have been shown to play an important role in the diseased heart.Although TTCC and iron uptake in cardiomyocytes has not been investigated greatly,a recent finding indicated that TTCC could be an important portal in thalassemic hearts.In this review,comprehensive findings collected from previous studies as well as a discussion of the controversy regarding iron uptake mechanisms into cardiomyocytes via calcium channels are presented with the hope that understanding the cellular iron uptake mechanism in cardiomyocytes will lead to improved treatment and prevention strategies,particularly in iron-overloaded patients.展开更多
文摘In the metallurgical industries, it is very important to characterize the flow of molten metals in open channels given that they are transported through these devices to different plant sections. However, unlike the flow of water which has been studied since ancient times, the flow of molten metals in open channels has received little attention. The unsteady non-uniform flow of blast furnace molten pig iron in a rectangular open channel is analyzed in this work by numerical solution of the Saint-Venant equations. The influence of mesh size on the convergence of molten metal height is studied to determine the proper mesh and time step sizes. A sinusoidal inflow pulse is imposed at the entrance of the channel in order to analyze the propagation of the resulting wave. The influence of the angle of inclination of the channel and the roughness coefficient of the walls on the amplitude and the dynamic behavior of the height of the molten metal are analyzed. Phase portraits of the channel state variables are constructed and interpreted. Numerical simulations show that as the angle of inclination of the channel increases, the amplitude of the formed wave decreases. From 10 degrees onwards, the peak of the wave descends even below the initial height. On the other hand, the roughness coefficient affects the molten pig iron height profiles in an inverse way than the angle of inclination. The amplitude of the formed wave increases as the roughness coefficient increases.
基金Supported by Thailand Research Fund grants RTA5280006 (Chattipakorn N)BRG5480003(Chattipakorn S)+1 种基金the National Research Council of Thailand(Chattipakorn N)the Thai-land Research Fund Royal Golden Jubilee project(Kumfu S and Chattipakorn N)
文摘Iron overload can lead to iron deposits in many tissues,particularly in the heart.It has also been shown to be associated with elevated oxidative stress in tissues.Elevated cardiac iron deposits can lead to iron overload cardiomyopathy,a condition which provokes mortality due to heart failure in iron-overloaded patients.Currently,the mechanism of iron uptake into cardiomyocytes is still not clearly understood.Growing evidence suggests L-type Ca2+channels(LTCCs)as a possible pathway for ferrous iron(Fe2+)uptake into cardiomyocytes under iron overload conditions.Nevertheless,controversy still exists since some findings on pharmacological interventions and those using different cell types do not support LTCC’s role as a portal for iron uptake in cardiac cells.Recently,T-type Ca2+channels (TTCC)have been shown to play an important role in the diseased heart.Although TTCC and iron uptake in cardiomyocytes has not been investigated greatly,a recent finding indicated that TTCC could be an important portal in thalassemic hearts.In this review,comprehensive findings collected from previous studies as well as a discussion of the controversy regarding iron uptake mechanisms into cardiomyocytes via calcium channels are presented with the hope that understanding the cellular iron uptake mechanism in cardiomyocytes will lead to improved treatment and prevention strategies,particularly in iron-overloaded patients.