期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种组合模型的电离层总电子含量预报方法 被引量:2
1
作者 王建敏 徐迟 +1 位作者 祁向前 黄佳鹏 《导航定位学报》 CSCD 2023年第2期166-175,共10页
针对电离层总电子含量(TEC)的非线性、非平稳等多种因素影响会导致全球导航定位服务数据的高噪声问题,提出一种小波分解、长短期记忆(LSTM)网络模型、埃尔曼(Elman)神经网络模型组合的方法:采用国际全球卫星导航系统服务组织(IGS)中心... 针对电离层总电子含量(TEC)的非线性、非平稳等多种因素影响会导致全球导航定位服务数据的高噪声问题,提出一种小波分解、长短期记忆(LSTM)网络模型、埃尔曼(Elman)神经网络模型组合的方法:采用国际全球卫星导航系统服务组织(IGS)中心提供的不同纬度、不同时间段的TEC格网点数据,利用db4小波分解对前20 d的TEC样本序列进行分解得到高频信息与低频信息;再分别利用LSTM模型和Elman模型对高频信息和低频信息进行预报;然后将2种模型的预报值进行重构;最后利用滑动窗口预测连续多个2 d数据进行分析研究。实验结果表明,组合模型在春、夏、秋、冬不同季节的电离层预报的均方根误差分别为0.85、0.68、0.84和0.84个总电子含量单位(TECu),平均绝对值残差分别为0.66、0.55、0.60和0.69个TECu,平均相对精度分别为97.1%、97.1%、96.7%、95.9%,与2种单一模型相比可有大幅度提升。 展开更多
关键词 小波分解 长短期记忆(LSTM)网络模型 埃尔曼(Elman)神经网络模型 滑动窗口 电离层总电子含量单位(tecu)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部