With insulin methanol water, and the ion pairing agent, hydrochloric acid and trifluroacetic acid (TFA), the character of the first plateau (FP) on the elution curve of frontal analysis in reversed phase liquid chro...With insulin methanol water, and the ion pairing agent, hydrochloric acid and trifluroacetic acid (TFA), the character of the first plateau (FP) on the elution curve of frontal analysis in reversed phase liquid chromatography (RPLC) was investigated by on line UV spectrometry and identified with nuclear magnetic resonance (NMR) spectrometry and mass spectrometry. The profile of the FP is the same as that of a usual elution curve of methanol in frontal analysis (FA). When the insulin concentration was limited to a certain range, the height of the FP was found to be proportional to the insulin concentration in mobile phase and its length companying to shorten. The FP profile on the intersection of two tangents reflects the components of the microstructure in the depth direction of the bonded stationary phase layer and the desorption dynamics of the displaced components. The displaced methanol was quantitatively determined by NMR and on line UV spectrometries. TFA with high UV absorbance can not be used as an ion pairing agent for the investigation of the FP in RPLC, but it can be used as a good marker to investigate the complicated transfer process of components in the stationary phase in RPLC. A stoichiometric displacement process between solute and solvent was proved to be valid in both usual and FA in RPLC. From the point of view of dynamics of mass transfer, the solutes can only contact to the surface of stationary phase in usual RPLC, while solute can penetrate into it in FA of RPLC. The solvation of insulin in methanol and water solution as an example indicating the usage of the FP in the FA was also investigated in this paper.展开更多
建立了一种以Nova PakCN HP氰基柱为固定相,以V(二氯甲烷)∶V(乙醇)=97∶3为流动相,添加N 苄氧羰基 S 苯基 L 半胱胺酸甲酯(MBPCE)为手性离子对试剂,拆分普萘洛尔对映体的高效液相色谱的分析方法。当c(MBPCE)=3.5mmol/L,流动相流速为0.5...建立了一种以Nova PakCN HP氰基柱为固定相,以V(二氯甲烷)∶V(乙醇)=97∶3为流动相,添加N 苄氧羰基 S 苯基 L 半胱胺酸甲酯(MBPCE)为手性离子对试剂,拆分普萘洛尔对映体的高效液相色谱的分析方法。当c(MBPCE)=3.5mmol/L,流动相流速为0.5ml/min,检测波长为254nm时,普萘洛尔对映体的分离选择性为1.15,分离度为1.02,线性范围为0.1~4.0mg/ml,浓度测定的变异系数为0.21%~0.86%。展开更多
文摘With insulin methanol water, and the ion pairing agent, hydrochloric acid and trifluroacetic acid (TFA), the character of the first plateau (FP) on the elution curve of frontal analysis in reversed phase liquid chromatography (RPLC) was investigated by on line UV spectrometry and identified with nuclear magnetic resonance (NMR) spectrometry and mass spectrometry. The profile of the FP is the same as that of a usual elution curve of methanol in frontal analysis (FA). When the insulin concentration was limited to a certain range, the height of the FP was found to be proportional to the insulin concentration in mobile phase and its length companying to shorten. The FP profile on the intersection of two tangents reflects the components of the microstructure in the depth direction of the bonded stationary phase layer and the desorption dynamics of the displaced components. The displaced methanol was quantitatively determined by NMR and on line UV spectrometries. TFA with high UV absorbance can not be used as an ion pairing agent for the investigation of the FP in RPLC, but it can be used as a good marker to investigate the complicated transfer process of components in the stationary phase in RPLC. A stoichiometric displacement process between solute and solvent was proved to be valid in both usual and FA in RPLC. From the point of view of dynamics of mass transfer, the solutes can only contact to the surface of stationary phase in usual RPLC, while solute can penetrate into it in FA of RPLC. The solvation of insulin in methanol and water solution as an example indicating the usage of the FP in the FA was also investigated in this paper.
文摘建立了一种以Nova PakCN HP氰基柱为固定相,以V(二氯甲烷)∶V(乙醇)=97∶3为流动相,添加N 苄氧羰基 S 苯基 L 半胱胺酸甲酯(MBPCE)为手性离子对试剂,拆分普萘洛尔对映体的高效液相色谱的分析方法。当c(MBPCE)=3.5mmol/L,流动相流速为0.5ml/min,检测波长为254nm时,普萘洛尔对映体的分离选择性为1.15,分离度为1.02,线性范围为0.1~4.0mg/ml,浓度测定的变异系数为0.21%~0.86%。