At the time of implanting bone-related implants into human body,a variety of biological responses to the material surface occur with respect to surface chemistry and physical state.The commonly used biomaterials(e.g.t...At the time of implanting bone-related implants into human body,a variety of biological responses to the material surface occur with respect to surface chemistry and physical state.The commonly used biomaterials(e.g.titanium and its alloy,Co–Cr alloy,stainless steel,polyetheretherketone,ultra-high molecular weight polyethylene and various calcium phosphates)have many drawbacks such as lack of biocompatibility and improper mechanical properties.As surface modification is very promising technology to overcome such problems,a variety of surface modification techniques have been being investigated.This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating,radiation grafting,plasma surface engineering,ion beam processing and surface patterning techniques.The contents are organized with different types of techniques to applicable materials,and typical examples are also described.展开更多
By taking into account the valence electron number and periodic number of constituting metals, a new method is first proposed to calculate the structural enthalpy in the Miedema's model and the modified Miedema...By taking into account the valence electron number and periodic number of constituting metals, a new method is first proposed to calculate the structural enthalpy in the Miedema's model and the modified Miedema's model is then used to predict the formation of metastable phases in Ni-Ti system. To testify the relevance of the present prediction, the multilayered films of Ni1-xTix (x=27.3, 30.5, 42.4, 83.1, 89) are prepared and irradiated by 200 keV xenon ions. Experiment results reveal that uniform amorphous phases are obtained in the Ni72.7Ti27.3, Ni69.5Ti30.5, and Ni57.6Ti42.4 films by increasing the irradiation dose. While for the Ni16.9Ti83.1 and Ni11Ti89 films, an hcp Ti-based solid solution phase and a bcc Ti-rich solid solution phase coexist upon irradiation dose higher than 6×1014 Xe+/cm2. The predictions of relative stabilities of metastable phases in Ni-Ti system by the modified Miedema's model match well with IBM experiments, thus justifying the modification proposed in the present study.展开更多
基金This work was partly supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Korea(2012R1A1A2040717)the National Basic Research Program of China funded by the Ministry of Science and Technology(MOST)of China(2011CB606205)+1 种基金the National Science and Technology Supporting Program of China funded by the MOST of China(2012BAI17B02)the National Natural Science Fund funded by the National Natural Science Foundation of China(21371106).
文摘At the time of implanting bone-related implants into human body,a variety of biological responses to the material surface occur with respect to surface chemistry and physical state.The commonly used biomaterials(e.g.titanium and its alloy,Co–Cr alloy,stainless steel,polyetheretherketone,ultra-high molecular weight polyethylene and various calcium phosphates)have many drawbacks such as lack of biocompatibility and improper mechanical properties.As surface modification is very promising technology to overcome such problems,a variety of surface modification techniques have been being investigated.This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating,radiation grafting,plasma surface engineering,ion beam processing and surface patterning techniques.The contents are organized with different types of techniques to applicable materials,and typical examples are also described.
基金support from the National Natural Science Foundation of China (Grant Nos. 50871058 and 50971072)the Ministry of Science and Technology of China (Grant No. 20011CB606301)+1 种基金the Ministry of Education of China (Grant No. 200800030054)the Administration of Tsinghua University
文摘By taking into account the valence electron number and periodic number of constituting metals, a new method is first proposed to calculate the structural enthalpy in the Miedema's model and the modified Miedema's model is then used to predict the formation of metastable phases in Ni-Ti system. To testify the relevance of the present prediction, the multilayered films of Ni1-xTix (x=27.3, 30.5, 42.4, 83.1, 89) are prepared and irradiated by 200 keV xenon ions. Experiment results reveal that uniform amorphous phases are obtained in the Ni72.7Ti27.3, Ni69.5Ti30.5, and Ni57.6Ti42.4 films by increasing the irradiation dose. While for the Ni16.9Ti83.1 and Ni11Ti89 films, an hcp Ti-based solid solution phase and a bcc Ti-rich solid solution phase coexist upon irradiation dose higher than 6×1014 Xe+/cm2. The predictions of relative stabilities of metastable phases in Ni-Ti system by the modified Miedema's model match well with IBM experiments, thus justifying the modification proposed in the present study.