Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. T...Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. The morphology of TiO2 electrode is one of the most important factors in QDSSCs. Inverse opal (IO) TiO2 electrode, which has periodic mesoporous structure, is useful for QDSSCs because of better penetration of electrolyte than conventional nanoparticulate TiO2 electrode. In addition, the ordered three dimensional structure of IO-TiO2 would be better for electron transport. We have found that open circuit voltage Voc of QDSSCs with IO-TiO2 electrodes was much higher (0.2 V) than that with nanoparticulate TiO2 electrodes. But short circuit current density Jsc was lower in the case of IO-TiO2 electrodes because of the smaller surface area of IO-TiO2. In this study, for increasing surface area of IO-TiO2, we applied TiCl4 post treatment on IO-TiO2 and investigated the effect of the post treatment on photovoltaic properties of CdSe QD sensitized IO-TiO2 solar cells. It was found that Jsc could be enhanced due to TiCl4 post treatment, but decreased again for more than one cycle treatment, which indicates excess post treatment may lead to worse penetration of electrolyte. Our results indicate that the appropriate post treatment can improve the energy conversion efficiency of the QDSSCs.展开更多
Heterogeneous photocatalysts exhibit high catalytic efficiency in the degradation of pollutants,but their stability and repeatability is not very good and requires high structural matching.Simply by nanosizing the pur...Heterogeneous photocatalysts exhibit high catalytic efficiency in the degradation of pollutants,but their stability and repeatability is not very good and requires high structural matching.Simply by nanosizing the pure Bi_(2)WO_(6)(BWO)photocatalyst without constructing a heterojunction,there is a significant improvement in its performance,with an enhancement effect of about 2.3 times(99.43%).The high photocatalytic degradation efficiency of the material can be attributed to the enhanced light absorption effect brought by the three-dimensional inverse-opal structure SiO_(2)(IS)and the abundant surface adsorbed oxygen generated after the formation of Si–O–W bonds.In addition,the introduction of IS greatly increases the surface area of nanostructured BWO,which accelerates the charge transfer process,while the adsorbed oxygen promotes the participation of·O^(2−) in the photocatalytic reaction,thereby accelerating the consumption of photo-generated electrons and ultimately improving the separation of charge carriers.Furthermore,the matched photonic bandgap further improves the absorption and utilization of light of the material.In this work,we constructs Si–O–W bonds to obtain inverse-opal SiO_(2)/Bi_(2)WO_(6) with uniformly growth of pure phase nano BWO,which provides a feasible strategy for the preparation of high-performance pure-phase photocatalysts.展开更多
Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrite...Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrites safety problems. The fundamental solution to the problems is to interfere electrodeposition process of lithium metal so that it can be carried out reversibly and stably. In this work, an inverse-opal structured TiO2membrane with a thickness of only ~1 μm is designed to regulate the electrodeposition behavior of lithium metal, in which the ordered channels homogenize mass transfer process, the anatase TiO_(2)walls of the ion channels reduce desolvation barrier of solvated lithium-ions, and the spherical cavities with a diameter of ~300 nm confine migration of the adsorbed lithium atoms during electrocrystallization to diminish overpotential of lithium. These systematic effects cover and essentially change the whole process of electrodeposition of lithium metal and eliminate the possibility of lithium dendrite formation. The as-obtained lithium metal electrode delivers a Coulombic efficiency of 99.86% in the 100th cycle, and maintains a low deposition overpotential of 0.01 V for 800 h.展开更多
文摘Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. The morphology of TiO2 electrode is one of the most important factors in QDSSCs. Inverse opal (IO) TiO2 electrode, which has periodic mesoporous structure, is useful for QDSSCs because of better penetration of electrolyte than conventional nanoparticulate TiO2 electrode. In addition, the ordered three dimensional structure of IO-TiO2 would be better for electron transport. We have found that open circuit voltage Voc of QDSSCs with IO-TiO2 electrodes was much higher (0.2 V) than that with nanoparticulate TiO2 electrodes. But short circuit current density Jsc was lower in the case of IO-TiO2 electrodes because of the smaller surface area of IO-TiO2. In this study, for increasing surface area of IO-TiO2, we applied TiCl4 post treatment on IO-TiO2 and investigated the effect of the post treatment on photovoltaic properties of CdSe QD sensitized IO-TiO2 solar cells. It was found that Jsc could be enhanced due to TiCl4 post treatment, but decreased again for more than one cycle treatment, which indicates excess post treatment may lead to worse penetration of electrolyte. Our results indicate that the appropriate post treatment can improve the energy conversion efficiency of the QDSSCs.
基金supported by the National Natural Science Foundation of China(grant No.52173214)the Youth Innovation Team of Shaanxi Universities(grant No.2022-70).
文摘Heterogeneous photocatalysts exhibit high catalytic efficiency in the degradation of pollutants,but their stability and repeatability is not very good and requires high structural matching.Simply by nanosizing the pure Bi_(2)WO_(6)(BWO)photocatalyst without constructing a heterojunction,there is a significant improvement in its performance,with an enhancement effect of about 2.3 times(99.43%).The high photocatalytic degradation efficiency of the material can be attributed to the enhanced light absorption effect brought by the three-dimensional inverse-opal structure SiO_(2)(IS)and the abundant surface adsorbed oxygen generated after the formation of Si–O–W bonds.In addition,the introduction of IS greatly increases the surface area of nanostructured BWO,which accelerates the charge transfer process,while the adsorbed oxygen promotes the participation of·O^(2−) in the photocatalytic reaction,thereby accelerating the consumption of photo-generated electrons and ultimately improving the separation of charge carriers.Furthermore,the matched photonic bandgap further improves the absorption and utilization of light of the material.In this work,we constructs Si–O–W bonds to obtain inverse-opal SiO_(2)/Bi_(2)WO_(6) with uniformly growth of pure phase nano BWO,which provides a feasible strategy for the preparation of high-performance pure-phase photocatalysts.
基金Financial supports from the National Key Research and Development Program (2016YFB0100200)National Natural Science Foundation of China (21935006)。
文摘Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrites safety problems. The fundamental solution to the problems is to interfere electrodeposition process of lithium metal so that it can be carried out reversibly and stably. In this work, an inverse-opal structured TiO2membrane with a thickness of only ~1 μm is designed to regulate the electrodeposition behavior of lithium metal, in which the ordered channels homogenize mass transfer process, the anatase TiO_(2)walls of the ion channels reduce desolvation barrier of solvated lithium-ions, and the spherical cavities with a diameter of ~300 nm confine migration of the adsorbed lithium atoms during electrocrystallization to diminish overpotential of lithium. These systematic effects cover and essentially change the whole process of electrodeposition of lithium metal and eliminate the possibility of lithium dendrite formation. The as-obtained lithium metal electrode delivers a Coulombic efficiency of 99.86% in the 100th cycle, and maintains a low deposition overpotential of 0.01 V for 800 h.