The aim of this investigation is to determine the effect of fluid leak-off (suction) and fluid injection (blowing) at the horizontal base on the two-dimensional spreading under the gravity of a thin film of viscous in...The aim of this investigation is to determine the effect of fluid leak-off (suction) and fluid injection (blowing) at the horizontal base on the two-dimensional spreading under the gravity of a thin film of viscous incompressible fluid by studying the evolution of the streamlines in the thin film. It is assumed that the normal component of the fluid velocity at the base is proportional to the spatial gradient of the height of the film. Lie symmetry methods for partial differential equations are applied. The invariant solution for the surface profile is derived. It is found that the thin fluid film approximation is satisfied for weak to moderate leak-off and for the whole range of fluid injection. The streamlines are derived and plotted by solving a cubic equation numerically. For fluid injection, there is a dividing streamline originating at the stagnation point at the base which separates the flow into two regions, a lower region consisting mainly of rising fluid and an upper region consisting mainly of descending fluid. An approximate analytical solution for the dividing streamline is derived. It generates an approximate V-shaped surface along the length of the two-dimensional film with the vertex of each section the stagnation point. It is concluded that the fluid flow inside the thin film can be visualised by plotting the streamlines. Other models relating the fluid velocity at the base to the height of the thin film can be expected to contain a dividing streamline originating at a stagnation point and dividing the flow into a lower region of rising fluid and an upper region of descending fluid.展开更多
In this paper, we discuss one-dimensional optimal system and the invariant solutions of Coupled Burgers’ equations. By using Wu-differential characteristic set algorithm with the aid of Mathematica software, the clas...In this paper, we discuss one-dimensional optimal system and the invariant solutions of Coupled Burgers’ equations. By using Wu-differential characteristic set algorithm with the aid of Mathematica software, the classical symmetries of the Coupled Burgers’ equations are calculated, and the one-dimensional optimal system of Lie algebra is constructed. And we obtain the invariant solution of the Coupled Burgers’ equations corresponding to one element in one dimensional optimal system by using the invariant method. The results generalize the exact solutions of the Coupled Burgers’ equations.展开更多
文摘The aim of this investigation is to determine the effect of fluid leak-off (suction) and fluid injection (blowing) at the horizontal base on the two-dimensional spreading under the gravity of a thin film of viscous incompressible fluid by studying the evolution of the streamlines in the thin film. It is assumed that the normal component of the fluid velocity at the base is proportional to the spatial gradient of the height of the film. Lie symmetry methods for partial differential equations are applied. The invariant solution for the surface profile is derived. It is found that the thin fluid film approximation is satisfied for weak to moderate leak-off and for the whole range of fluid injection. The streamlines are derived and plotted by solving a cubic equation numerically. For fluid injection, there is a dividing streamline originating at the stagnation point at the base which separates the flow into two regions, a lower region consisting mainly of rising fluid and an upper region consisting mainly of descending fluid. An approximate analytical solution for the dividing streamline is derived. It generates an approximate V-shaped surface along the length of the two-dimensional film with the vertex of each section the stagnation point. It is concluded that the fluid flow inside the thin film can be visualised by plotting the streamlines. Other models relating the fluid velocity at the base to the height of the thin film can be expected to contain a dividing streamline originating at a stagnation point and dividing the flow into a lower region of rising fluid and an upper region of descending fluid.
文摘In this paper, we discuss one-dimensional optimal system and the invariant solutions of Coupled Burgers’ equations. By using Wu-differential characteristic set algorithm with the aid of Mathematica software, the classical symmetries of the Coupled Burgers’ equations are calculated, and the one-dimensional optimal system of Lie algebra is constructed. And we obtain the invariant solution of the Coupled Burgers’ equations corresponding to one element in one dimensional optimal system by using the invariant method. The results generalize the exact solutions of the Coupled Burgers’ equations.