期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLO v4的铁道侵限障碍物检测方法研究 被引量:26
1
作者 刘力 苟军年 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2022年第2期528-536,共9页
铁路侵限异物的自动检测是未来实现铁路智能化的重要组成部分。由于随机的侵限行为可能导致严重的行车后果,研究可以实现连续检测列车运行前方区域状况的技术,是保障列车出行安全的现实需求。针对传统侵限异物检测方法检测类别单一和时... 铁路侵限异物的自动检测是未来实现铁路智能化的重要组成部分。由于随机的侵限行为可能导致严重的行车后果,研究可以实现连续检测列车运行前方区域状况的技术,是保障列车出行安全的现实需求。针对传统侵限异物检测方法检测类别单一和时效性差的不足,提出一种基于YOLO v4检测网络的侵限异物检测模型。在锚框(anchor)的选择上,通过对K-means算法聚类中心的选取方法进行改进,用欧式距离度量替换随机选择的方法,从而获得更具代表的anchor尺寸;在YOLO v4网络的基础上,通过在骨干网络和特征融合网络之间加入压缩和激励模块,在不增加检测时间的同时提升了检测效果;在侵限检测模型的训练方面,使用公共数据集和自制异物侵限数据联合训练的方式提高了模型的泛化能力。在侵限异物测试集上对训练好的模型进行测试,结果表明:该方法对常见异物的平均检测精度达到90.2%,检测速度为53 fps,与Faster R-CNN相比检测精度相差较少的情况下,检测精度有大幅提升。改进的检测模型达到了预期设计目标,可以为铁路侵限异物检测智能化的研究提供参考。 展开更多
关键词 侵限异物 目标检测 YOLO v4 聚类 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部