Ion transport plays an important role in energy conversion, biosensors, and a variety of biological processes. Carbon nanotubes, especially for the carbon nanotubes arrays with controlled vertically aligned structures...Ion transport plays an important role in energy conversion, biosensors, and a variety of biological processes. Carbon nanotubes, especially for the carbon nanotubes arrays with controlled vertically aligned structures, have displayed great potential as a promising material for regulating ion transport behaviors in the applications of the nanofluidic devices and osmotic energy conversion. Herein, we demonstrate the thermo-controlled ion transport system through the vertically aligned multiwall carbon nanotubes arrays membrane modified by the thermo-responsive hydrogel in a simple and reliable way. The functional carbon nanotubes backbone with the inherent surface charge and interstitial channels structure renders the system improved ion transport behaviors and well controlled switching property by thermo. Based on the integrated properties, the energy output from osmotic power in this system could be regulated by the reversible temperature switches. Moreover, it can realize a higher osmotic energy conversion property regulated by the thermos, which may extend the practical application in the future. The system that combines intelligent response with controlled ion transport behaviors and potential osmotic energy utilizations presents a valuable paradigm for the use of carbon nanotubes and hydrogel composite materials and provides a promising way for applications of nanofluidic devices.展开更多
AIM: To investigate the characteristics of slow electrical waves and the presence of transient receptor potential melastatin-type 7 (TRPM7) in the human gastrointestinal (GI) tract. METHODS: Conventional microel...AIM: To investigate the characteristics of slow electrical waves and the presence of transient receptor potential melastatin-type 7 (TRPM7) in the human gastrointestinal (GI) tract. METHODS: Conventional microelectrode techniques were used to record intracellular electrical responses from human GI smooth muscle tissue. Immunohistochemistry was used to identify TRPM7 channels in interstitial cells of Cajat (ICCs). RESULTS: The human GI tract generated slow electrical waves and had ICCs which functioned as pacemak er cells. Flufenamic acid, a nonselective cation channel blocker, and 2-APB (2-aminoethoxydiphenyl borate) and La3+, TRPM7 channel blockers, inhibited the slowwaves. Also, TRPM7 channels were expressed in ICCs in human tissue. CONCLUSION: These results suggest that the human GI tract generates slow waves and that TRPM7 channels expressed in the ICCs may be involved in the gen- eration of the slow waves.展开更多
目的观察小鼠HCN1通道基因敲除对其膀胱Cajal间质细胞(interstitial cells of Cajal,ICCs)中BK通道的表达和功能的影响,探讨这种影响对膀胱兴奋性调控的意义。方法健康清洁成年的野生型C57BL/6J小鼠和HCN1通道基因敲除的C57BL/6J小鼠各4...目的观察小鼠HCN1通道基因敲除对其膀胱Cajal间质细胞(interstitial cells of Cajal,ICCs)中BK通道的表达和功能的影响,探讨这种影响对膀胱兴奋性调控的意义。方法健康清洁成年的野生型C57BL/6J小鼠和HCN1通道基因敲除的C57BL/6J小鼠各48只(雌雄各半)分别记为正常组和敲基因组,反转录PCR(RT-PCR)、荧光定量PCR(Q-PCR)、Western blot和免疫荧光双标检测其膀胱ICCs中BK通道各亚基的表达变化,离体逼尿肌肌条实验检测加入BK通道阻滞剂IBTX前后肌条收缩的变化,激光共聚焦显微镜下检测分别加入BK通道激动剂NS1619、阻滞剂IBTX前后小鼠膀胱ICCs内钙荧光的变化。结果 Q-PCR显示敲基因组小鼠膀胱中BK通道α、β1、β2、β3、β4各亚基表达均降低(P<0.01);Western blot显示敲基因组小鼠膀胱中BK通道α、β1、β2、β3、β4亚基表达均降低(其中α、β3、β4:P<0.01;β1、β2:P<0.05);免疫荧光双标显示敲基因组小鼠膀胱ICCs中BK通道α亚基表达降低(P<0.01);离体逼尿肌肌条实验显示加入IBTX后敲基因组和正常组肌条收缩幅度均变大(P<0.01,P<0.05),且敲基因组肌条收缩幅度的变化值小于正常组(P<0.05);激光共聚焦显微镜下可见加入NS1619后两组ICCs内钙荧光均降低(P<0.05)、加入IBTX后两组ICCs内钙荧光均增强(P<0.01),且不论加入激动剂或阻滞剂,敲基因组加药前后ICCs内钙荧光的变化值均小于正常组(P<0.01)。结论小鼠HCN1通道基因敲除下调了其膀胱ICCs中BK通道的表达及功能,这种下调可能是对HCN1通道基因敲除后膀胱收缩减弱的一种代偿。展开更多
基金supported by the National Natural Science Foundation of China (Nos. 21975209, 52025132 and 21621091)the National Key R&D Program of China (No. 2018YFA0209500)。
文摘Ion transport plays an important role in energy conversion, biosensors, and a variety of biological processes. Carbon nanotubes, especially for the carbon nanotubes arrays with controlled vertically aligned structures, have displayed great potential as a promising material for regulating ion transport behaviors in the applications of the nanofluidic devices and osmotic energy conversion. Herein, we demonstrate the thermo-controlled ion transport system through the vertically aligned multiwall carbon nanotubes arrays membrane modified by the thermo-responsive hydrogel in a simple and reliable way. The functional carbon nanotubes backbone with the inherent surface charge and interstitial channels structure renders the system improved ion transport behaviors and well controlled switching property by thermo. Based on the integrated properties, the energy output from osmotic power in this system could be regulated by the reversible temperature switches. Moreover, it can realize a higher osmotic energy conversion property regulated by the thermos, which may extend the practical application in the future. The system that combines intelligent response with controlled ion transport behaviors and potential osmotic energy utilizations presents a valuable paradigm for the use of carbon nanotubes and hydrogel composite materials and provides a promising way for applications of nanofluidic devices.
基金Supported by The Creative Research Initiative Center for Bio-Artificial Muscle of the Ministry of Education,Science and Technology (MEST) in Korea
文摘AIM: To investigate the characteristics of slow electrical waves and the presence of transient receptor potential melastatin-type 7 (TRPM7) in the human gastrointestinal (GI) tract. METHODS: Conventional microelectrode techniques were used to record intracellular electrical responses from human GI smooth muscle tissue. Immunohistochemistry was used to identify TRPM7 channels in interstitial cells of Cajat (ICCs). RESULTS: The human GI tract generated slow electrical waves and had ICCs which functioned as pacemak er cells. Flufenamic acid, a nonselective cation channel blocker, and 2-APB (2-aminoethoxydiphenyl borate) and La3+, TRPM7 channel blockers, inhibited the slowwaves. Also, TRPM7 channels were expressed in ICCs in human tissue. CONCLUSION: These results suggest that the human GI tract generates slow waves and that TRPM7 channels expressed in the ICCs may be involved in the gen- eration of the slow waves.