期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An interpolating boundary element-free method (IBEFM) for elasticity problems 被引量:5
1
作者 REN HongPing 1 , CHENG YuMin 2 & ZHANG Wu 1 1 School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China 2 Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第4期758-766,共9页
The paper begins by discussing the interpolating moving least-squares (IMLS) method. Then the formulae of the IMLS method obtained by Lancaster are revised. On the basis of the boundary element-free method (BEFM), com... The paper begins by discussing the interpolating moving least-squares (IMLS) method. Then the formulae of the IMLS method obtained by Lancaster are revised. On the basis of the boundary element-free method (BEFM), combining the boundary integral equation method with the IMLS method improved in this paper, the interpolating boundary element-free method (IBEFM) for two-dimensional elasticity problems is presented, and the corresponding formulae of the IBEFM for two-dimensional elasticity problems are obtained. In the IMLS method in this paper, the shape function satisfies the property of Kronecker δ function, and then in the IBEFM the boundary conditions can be applied directly and easily. The IBEFM is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution to the nodal variables. Thus it gives a greater computational precision. Numerical examples are presented to demonstrate the method. 展开更多
关键词 moving least-squares (MLS) approximation interpolating moving least-squares (imls) method BOUNDARY integral equation MESHLESS method BOUNDARY element-free method (BEFM) interpolating BOUNDARY element-free method (IBEFM) elasticity problem
原文传递
用插值型无单元Galerkin方法求解广义Fisher方程
2
作者 张国达 王迪飞 任红萍 《太原师范学院学报(自然科学版)》 2015年第2期1-7,共7页
首先讨论了移动最小二乘插值法,并利用移动最小二乘插值法建立形函数,结合广义Fisher方程的Galerkin积分弱形式,提出了求广义Fisher方程数值解的插值型无单元Galerkin方法,该方法在求解偏微分方程定解问题时可以直接施加本质边界条件,... 首先讨论了移动最小二乘插值法,并利用移动最小二乘插值法建立形函数,结合广义Fisher方程的Galerkin积分弱形式,提出了求广义Fisher方程数值解的插值型无单元Galerkin方法,该方法在求解偏微分方程定解问题时可以直接施加本质边界条件,这样就提高了求解效率.并给出了数值算例. 展开更多
关键词 无网格方法 移动最小二乘插值法 插值型无单元Galerkin方法 广义FISHER方程
下载PDF
IEFG针对矩形域内的Poisson方程的精确度研究
3
作者 王丽萍 任红萍 《太原师范学院学报(自然科学版)》 2015年第1期1-4,共4页
在移动最小二乘插值法的基础上,对插值型无单元Galerkin方法(IEFG)在矩形域内的势问题的精确度进行研究.IEFG方法在运用于工程计算时,可以直接施加边界条件,具有计算简便精度高的优点.
关键词 无网格方法 移动最小二乘插值法 插值型无单元Galerkin方法(IEFG) 权函数 形函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部