A comprehensive design optimization of 1.55-#m high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (ηi) while maintaining the low internal loss (αi) of the ...A comprehensive design optimization of 1.55-#m high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (ηi) while maintaining the low internal loss (αi) of the device, thereby achieving high power operation. Four different waveguide structures of broad area lasers were fabricated and characterized in depth. Through theoretical analysis and experiment verifications, we show that laser structures with stepped waveguide and thin upper separate confinement layer will result in high αi and overall slope efficiency. A continuous wave (CW) single side output power of 160 mW was obtained for an uncoated laser with a 50μm active area width and 1 mm cavity length.展开更多
The reasons for low output power of AlGalnP Light Emitting Diodes (LEDs) have been analysed. LEDs with AlGaInP material have high internal but low external quantum efficiency and much heat generated inside especiall...The reasons for low output power of AlGalnP Light Emitting Diodes (LEDs) have been analysed. LEDs with AlGaInP material have high internal but low external quantum efficiency and much heat generated inside especially at a large injected current which would reduce both the internal and external quantum efficiencies. Two kinds of LEDs with the same active region but different window layers have been fabricated. The new window layer composed of textured 0.5 μm GaP and thin Indium-Tin-Oxide film has shown that low external quantum efficiency (EQE) has serious impaction on the internal quantum efficiency (IQE), because the carrier distribution will change with the body temperature increasing due to the heat inside, and the test results have shown the evidence of LEDs with lower output power and bigger wavelength red shift.展开更多
应变锗材料具有准直接带特性,而且与标准硅工艺兼容,成为实现硅基发光器件重要的候选材料之一.本文基于van de Walle形变势理论,计算了应变情况下半导体Ge材料的能带结构以及载流子在导带中的分布;通过分析载流子直接带和间接带问的辐...应变锗材料具有准直接带特性,而且与标准硅工艺兼容,成为实现硅基发光器件重要的候选材料之一.本文基于van de Walle形变势理论,计算了应变情况下半导体Ge材料的能带结构以及载流子在导带中的分布;通过分析载流子直接带和间接带问的辐射复合以及俄歇复合、位错等引起的非辐射复合的竞争,计算了N型掺杂张应变Ge材料直接带跃迁的内量子效率和光增益等发光性质.结果表明,张应变可有效增强Ge材料直接带隙跃迁发光.在1.5%张应变条件下,N型掺杂Ge的最大内量子效率可以达到74.6%,光增益可以与Ⅲ-V族材料相比拟.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.61274046,61201103)the National High Technology Research and Development Program of China(No.2013AA014202)
文摘A comprehensive design optimization of 1.55-#m high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (ηi) while maintaining the low internal loss (αi) of the device, thereby achieving high power operation. Four different waveguide structures of broad area lasers were fabricated and characterized in depth. Through theoretical analysis and experiment verifications, we show that laser structures with stepped waveguide and thin upper separate confinement layer will result in high αi and overall slope efficiency. A continuous wave (CW) single side output power of 160 mW was obtained for an uncoated laser with a 50μm active area width and 1 mm cavity length.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2006AA03A121)the National Basic Research Program of China(Grant No.2006CB604900)
文摘The reasons for low output power of AlGalnP Light Emitting Diodes (LEDs) have been analysed. LEDs with AlGaInP material have high internal but low external quantum efficiency and much heat generated inside especially at a large injected current which would reduce both the internal and external quantum efficiencies. Two kinds of LEDs with the same active region but different window layers have been fabricated. The new window layer composed of textured 0.5 μm GaP and thin Indium-Tin-Oxide film has shown that low external quantum efficiency (EQE) has serious impaction on the internal quantum efficiency (IQE), because the carrier distribution will change with the body temperature increasing due to the heat inside, and the test results have shown the evidence of LEDs with lower output power and bigger wavelength red shift.
文摘应变锗材料具有准直接带特性,而且与标准硅工艺兼容,成为实现硅基发光器件重要的候选材料之一.本文基于van de Walle形变势理论,计算了应变情况下半导体Ge材料的能带结构以及载流子在导带中的分布;通过分析载流子直接带和间接带问的辐射复合以及俄歇复合、位错等引起的非辐射复合的竞争,计算了N型掺杂张应变Ge材料直接带跃迁的内量子效率和光增益等发光性质.结果表明,张应变可有效增强Ge材料直接带隙跃迁发光.在1.5%张应变条件下,N型掺杂Ge的最大内量子效率可以达到74.6%,光增益可以与Ⅲ-V族材料相比拟.