Every year on 22 April, we have celebrated Earth Day and the beautiful planet we call home. Earth Day, established in 1970, has been used to highlight our planet’s environmental challenges and raise awareness of the ...Every year on 22 April, we have celebrated Earth Day and the beautiful planet we call home. Earth Day, established in 1970, has been used to highlight our planet’s environmental challenges and raise awareness of the importance of protecting our world for future generations [1]. To provide the protection of our planet, we should explain Earth’s environmental challenges to the best of our knowledge in frames of contemporary Geophysics. This paper gives a short overview of the developed Hypersphere World-Universe Model (WUM) and pay particular attention to the principal role of Dark Matter (DM) in the Earth’s life. In this manuscript, we discuss different aspects of the Earth: a condition of Young Earth before the Beginning of life on It;Internal Structure;“The 660-km Boundary” that we named Geomagma;Random Variations of Earth’s Rotational Speed on a daily basis;Origin of Moon;Expanding Earth;Internal Heating;Faint Young Sun paradox;Geocorona and Planetary Coronas;High-Energy Atmospheric Physics. WUM proposed principally different ways to solve the problems of Internal Heating, Origin of the Moon, and Faint Young Sun paradox based on DM core of the Earth. The Model revealed the fact that the Sun Activity causes the Geomagma Activity and, as a consequence, Random Variations of Earth’s Rotational Speed by the varying Sun’s magnetic field.展开更多
Methylcyclohexane(MCH)serves as an ideal hydrogen carrier in hydrogen storage and transportation process.In the continuous production of hydrogen from MCH dehydrogenation,the rational design of energy-efficient cataly...Methylcyclohexane(MCH)serves as an ideal hydrogen carrier in hydrogen storage and transportation process.In the continuous production of hydrogen from MCH dehydrogenation,the rational design of energy-efficient catalytic way with good performance remains an enormous challenge.Herein,an internal electric heating(IEH)assisted mode was designed and proposed by the directly electrical-driven catalyst using the resistive heating effect.The Pt/Al2O_(3)on Fe foam(Pt/Al2O_(3)/FF)with unique threedimensional network structure was constructed.The catalysts were studied in a comprehensive way including X-ray diffraction(XRD),scanning electron microscopy(SEM)-mapping,in situ extended X-ray absorption fine structure(EXAFS),and in situ COFourier transform infrared(FTIR)measurements.It was found that the hydrogen evolution rate in IEH mode can reach up to above 2060 mmol·gPt^(−1)·min^(−1),which is 2–5 times higher than that of reported Pt based catalysts under similar reaction conditions in conventional heating(CH)mode.In combination with measurements from high-resolution infrared thermometer,the equations of heat transfer rate,and reaction heat analysis results,the Pt/Al2O_(3)/FF not only has high mass and heat transfer ability to promote catalytic performance,but also behaves as the heating component with a low thermal resistance and heat capacity offering a fast temperature response in IEH mode.In addition,the chemical adsorption and activation of MCH molecules can be efficiently facilitated by IEH mode,proved by the operando MCH-FTIR results.Therefore,the as-developed IEH mode can efficiently reduce the heat and mass transfer limitations and prominently boost the dehydrogenation performance,which has a broad application potential in hydrogen storage and other catalytic reaction processes.展开更多
The present article has been fine-tuned with the investigation of mixed convection Darcy-Forchheimer flow of ZnO-SAE50 oil nanolubricant over an inclined rotating disk under the influence of uniform applied magnetic f...The present article has been fine-tuned with the investigation of mixed convection Darcy-Forchheimer flow of ZnO-SAE50 oil nanolubricant over an inclined rotating disk under the influence of uniform applied magnetic field applied to various industries.The current study has been enriched with additional consideration of slip flow,thermal radiation,viscous dissipation,Joulian dissipation and internal heating.In view of augmentation of thermal conductivity of nanolubricant,a new micro-nano-convection model namely Patel model has been invoked.The specialty of this model involves the effects of specific surface area and nano-convection due to Brownian motion of nanoparticles,kinetic theory based micro-convection,liquid layering and particle concentration.Suitably transformed governing equations have been solved numerically by using Runge-Kutta-Fehlberg scheme.An analysis of the present study has shown that applied magnetic field,porosity of the medium,velocity slip and inertia coefficient account for the slowing down of radial as well as tangential flow of ZnO-SAE50 oil nanolubricant,thereby leading to an improvement in velocity and thermal boundary layers.展开更多
Penetrative Bénard-Maranagoni convection in micropolar ferromagnetic fluid layer in the presence of a uniform vertical magnetic field has been investigated via internal heating model. The lower boundary is consid...Penetrative Bénard-Maranagoni convection in micropolar ferromagnetic fluid layer in the presence of a uniform vertical magnetic field has been investigated via internal heating model. The lower boundary is considered to be rigid at constant temperature, while the upper boundary free open to the atmosphere is flat and subject to a convective surface boundary condition. The resulting eigenvalue problem is solved numerically by Galerkin method. The stability of the system is found to be dependent on the dimensionless internal heat source strength Ns, magnetic parameter M1, the non-linearity of magnetization parameter M3, coupling parameter N1, spin diffusion parameter N3 and micropolar heat conduction parameter N5. The results show that the onset of ferroconvection is delayed with an increase in N1 and N5 but hastens the onset of ferroconvection with an increase in M1, M3, N3 and Ns. The dimension of ferroconvection cells increases when there is an increase in M3, N1, N5 and Ns and decrease in M1 and N3.展开更多
文摘Every year on 22 April, we have celebrated Earth Day and the beautiful planet we call home. Earth Day, established in 1970, has been used to highlight our planet’s environmental challenges and raise awareness of the importance of protecting our world for future generations [1]. To provide the protection of our planet, we should explain Earth’s environmental challenges to the best of our knowledge in frames of contemporary Geophysics. This paper gives a short overview of the developed Hypersphere World-Universe Model (WUM) and pay particular attention to the principal role of Dark Matter (DM) in the Earth’s life. In this manuscript, we discuss different aspects of the Earth: a condition of Young Earth before the Beginning of life on It;Internal Structure;“The 660-km Boundary” that we named Geomagma;Random Variations of Earth’s Rotational Speed on a daily basis;Origin of Moon;Expanding Earth;Internal Heating;Faint Young Sun paradox;Geocorona and Planetary Coronas;High-Energy Atmospheric Physics. WUM proposed principally different ways to solve the problems of Internal Heating, Origin of the Moon, and Faint Young Sun paradox based on DM core of the Earth. The Model revealed the fact that the Sun Activity causes the Geomagma Activity and, as a consequence, Random Variations of Earth’s Rotational Speed by the varying Sun’s magnetic field.
基金the National Natural Science Foundation of China(Nos.22225807,21961132026,21878331,22021004,and 22109177)the National Key Research and Development Program(Nos.2020YFA0210903 and 2021YFA1501304)+4 种基金the PetroChina research institute of petroleum processing program(Nos.PRIKY21057 and PRIKY 21199)the Fundamental Research Funds for the Central Universities(No.2462020BJRC008)the support of Energy Internet Research Center,China University of Petroleum(Beijing),Haihe Laboratory of Sustainable Chemical Transformations(No.CYZC202105)the Beijing Synchrotron Radiation Facility(BSRF)Shanghai Synchrotron Radiation Facility(SSRF)during the XAFS measurements at the beamline of 1W1B,1W2B,and BL11B.
文摘Methylcyclohexane(MCH)serves as an ideal hydrogen carrier in hydrogen storage and transportation process.In the continuous production of hydrogen from MCH dehydrogenation,the rational design of energy-efficient catalytic way with good performance remains an enormous challenge.Herein,an internal electric heating(IEH)assisted mode was designed and proposed by the directly electrical-driven catalyst using the resistive heating effect.The Pt/Al2O_(3)on Fe foam(Pt/Al2O_(3)/FF)with unique threedimensional network structure was constructed.The catalysts were studied in a comprehensive way including X-ray diffraction(XRD),scanning electron microscopy(SEM)-mapping,in situ extended X-ray absorption fine structure(EXAFS),and in situ COFourier transform infrared(FTIR)measurements.It was found that the hydrogen evolution rate in IEH mode can reach up to above 2060 mmol·gPt^(−1)·min^(−1),which is 2–5 times higher than that of reported Pt based catalysts under similar reaction conditions in conventional heating(CH)mode.In combination with measurements from high-resolution infrared thermometer,the equations of heat transfer rate,and reaction heat analysis results,the Pt/Al2O_(3)/FF not only has high mass and heat transfer ability to promote catalytic performance,but also behaves as the heating component with a low thermal resistance and heat capacity offering a fast temperature response in IEH mode.In addition,the chemical adsorption and activation of MCH molecules can be efficiently facilitated by IEH mode,proved by the operando MCH-FTIR results.Therefore,the as-developed IEH mode can efficiently reduce the heat and mass transfer limitations and prominently boost the dehydrogenation performance,which has a broad application potential in hydrogen storage and other catalytic reaction processes.
文摘The present article has been fine-tuned with the investigation of mixed convection Darcy-Forchheimer flow of ZnO-SAE50 oil nanolubricant over an inclined rotating disk under the influence of uniform applied magnetic field applied to various industries.The current study has been enriched with additional consideration of slip flow,thermal radiation,viscous dissipation,Joulian dissipation and internal heating.In view of augmentation of thermal conductivity of nanolubricant,a new micro-nano-convection model namely Patel model has been invoked.The specialty of this model involves the effects of specific surface area and nano-convection due to Brownian motion of nanoparticles,kinetic theory based micro-convection,liquid layering and particle concentration.Suitably transformed governing equations have been solved numerically by using Runge-Kutta-Fehlberg scheme.An analysis of the present study has shown that applied magnetic field,porosity of the medium,velocity slip and inertia coefficient account for the slowing down of radial as well as tangential flow of ZnO-SAE50 oil nanolubricant,thereby leading to an improvement in velocity and thermal boundary layers.
文摘Penetrative Bénard-Maranagoni convection in micropolar ferromagnetic fluid layer in the presence of a uniform vertical magnetic field has been investigated via internal heating model. The lower boundary is considered to be rigid at constant temperature, while the upper boundary free open to the atmosphere is flat and subject to a convective surface boundary condition. The resulting eigenvalue problem is solved numerically by Galerkin method. The stability of the system is found to be dependent on the dimensionless internal heat source strength Ns, magnetic parameter M1, the non-linearity of magnetization parameter M3, coupling parameter N1, spin diffusion parameter N3 and micropolar heat conduction parameter N5. The results show that the onset of ferroconvection is delayed with an increase in N1 and N5 but hastens the onset of ferroconvection with an increase in M1, M3, N3 and Ns. The dimension of ferroconvection cells increases when there is an increase in M3, N1, N5 and Ns and decrease in M1 and N3.