用甘氨酸-硝酸盐法(GNP)合成了Ca2+掺杂的中温固体氧化物燃料电池电解质粉体La0.8Sr0.2-xCaxGa0.8Mg0.2O3-δ(LSCGM)(x=0.02,0.04,0.06,0.08,0.10)。用SEM和XRD等手段对产品的成相过程及微结构进行了表征,用Arch im edes排水法进行样品...用甘氨酸-硝酸盐法(GNP)合成了Ca2+掺杂的中温固体氧化物燃料电池电解质粉体La0.8Sr0.2-xCaxGa0.8Mg0.2O3-δ(LSCGM)(x=0.02,0.04,0.06,0.08,0.10)。用SEM和XRD等手段对产品的成相过程及微结构进行了表征,用Arch im edes排水法进行样品的密度测试。研究结果表明:在La0.8Sr0.2Ga0.8Mg0.2O3-δ体系中引入Ca2+可提高粉体的烧结活性,促进坯体的致密化。随着Ca2+含量的增加,材料的烧结致密度逐渐提高,x=0.10时相对密度最大。展开更多
采用固相法合成了中温固体氧化物燃料电池(IT-SOFCs)阴极材料La Bi Mn2O6,并利用X射线衍射(XRD)和电化学阻抗谱(EIS)进行表征。结果表明该材料与电解质Ce0.7Bi0.3O1.85(CBO)在1 000℃烧结12 h不发生反应。交流阻抗和直流极化测...采用固相法合成了中温固体氧化物燃料电池(IT-SOFCs)阴极材料La Bi Mn2O6,并利用X射线衍射(XRD)和电化学阻抗谱(EIS)进行表征。结果表明该材料与电解质Ce0.7Bi0.3O1.85(CBO)在1 000℃烧结12 h不发生反应。交流阻抗和直流极化测试结果发现,阴极极化电阻随测试温度的增加而逐渐减小,700℃空气中的极化电阻为0.71Ω·cm2;氧分压测试结果显示,在600~700℃范围内,电极反应的速率控制步骤为电极上发生的电荷转移反应。电极过电位为85 m V时,700℃的阴极电流密度达到216 m A·cm-2,表明La Bi Mn2O6是一种潜在的中温固体氧化物燃料电池(IT-SOFCs)阴极材料。展开更多
NiO-La0.3Ce0.7O2-δ(LDC30) novel anode was investigated for IT-SOFCs(Intermediate Temperature-Solid Oxide Fuel Cells) with LaGaO3-based electrolyte. The results showed that LDC30 has a suitable chemical compatibility ...NiO-La0.3Ce0.7O2-δ(LDC30) novel anode was investigated for IT-SOFCs(Intermediate Temperature-Solid Oxide Fuel Cells) with LaGaO3-based electrolyte. The results showed that LDC30 has a suitable chemical compatibility with NiO and NiO-LDC30 has a good thermal expansion matching with LDC30 interlayer and LSGM(La0.8Sr0.2Ga0.8Mg0.2O3-δ) electrolyte, so NiO-LDC30/LDC30 was considered as a feasible and novel anode system. It was also shown that NiO content plays a key role on polarization performance and morphology of the anode. When the content of NiO was 60%(mass fraction), the polarization loss of anode was the lowest. Next we will optimize the porosity and sintering procedure to modify the microstructure and performance of the anode.展开更多
采用固相反应法合成中温固体氧化物燃料电池的Sm 0.5 Sr 0.5 CoO 3-δ阴极粉末,经机械混合法制备出Sm 0.5 Sr 0.5 CoO 3-δ-Ce 0.8 Sm 0.2 O 1.9复合阴极粉末。研究了不同煅烧温度得到粉末的晶体结构,判断得出Sm 0.5 Sr 0.5 CoO 3-δ阴...采用固相反应法合成中温固体氧化物燃料电池的Sm 0.5 Sr 0.5 CoO 3-δ阴极粉末,经机械混合法制备出Sm 0.5 Sr 0.5 CoO 3-δ-Ce 0.8 Sm 0.2 O 1.9复合阴极粉末。研究了不同煅烧温度得到粉末的晶体结构,判断得出Sm 0.5 Sr 0.5 CoO 3-δ阴极粉末的最佳煅烧温度,表征了Sm 0.5 Sr 0.5 CoO 3-δ和Ce 0.8 Sm 0.2 O 1.9之间的化学相容性。通过电化学工作站对Sm 0.5 Sr 0.5 CoO 3-δ和Sm 0.5 Sr 0.5 CoO 3-δ-Ce 0.8 Sm 0.2 O 1.9的电化学性能进行了测试。结果表明:Sm 0.5 Sr 0.5 CoO 3-δ的最佳煅烧温度大约是1400℃,Sm 0.5 Sr 0.5 CoO 3-δ阴极和Ce 0.8 Sm 0.2 O 1.9电解质二者之间呈现出良好的化学相容性。Sm 0.5 Sr 0.5 CoO 3-δ-Ce 0.8 Sm 0.2 O 1.9粉末的中位径(D 50)约是8.034μm。Ce 0.8 Sm 0.2 O 1.9电解质粉末的添加有效地降低了Sm 0.5 Sr 0.5 CoO 3-δ的极化电阻。与Sm 0.5 Sr 0.5 CoO 3-δ相比,Sm 0.5 Sr 0.5 CoO 3-δ-Ce 0.8 Sm 0.2 O 1.9复合阴极的单电池在700℃时具有更高的功率密度。展开更多
文摘用甘氨酸-硝酸盐法(GNP)合成了Ca2+掺杂的中温固体氧化物燃料电池电解质粉体La0.8Sr0.2-xCaxGa0.8Mg0.2O3-δ(LSCGM)(x=0.02,0.04,0.06,0.08,0.10)。用SEM和XRD等手段对产品的成相过程及微结构进行了表征,用Arch im edes排水法进行样品的密度测试。研究结果表明:在La0.8Sr0.2Ga0.8Mg0.2O3-δ体系中引入Ca2+可提高粉体的烧结活性,促进坯体的致密化。随着Ca2+含量的增加,材料的烧结致密度逐渐提高,x=0.10时相对密度最大。
文摘采用固相法合成了中温固体氧化物燃料电池(IT-SOFCs)阴极材料La Bi Mn2O6,并利用X射线衍射(XRD)和电化学阻抗谱(EIS)进行表征。结果表明该材料与电解质Ce0.7Bi0.3O1.85(CBO)在1 000℃烧结12 h不发生反应。交流阻抗和直流极化测试结果发现,阴极极化电阻随测试温度的增加而逐渐减小,700℃空气中的极化电阻为0.71Ω·cm2;氧分压测试结果显示,在600~700℃范围内,电极反应的速率控制步骤为电极上发生的电荷转移反应。电极过电位为85 m V时,700℃的阴极电流密度达到216 m A·cm-2,表明La Bi Mn2O6是一种潜在的中温固体氧化物燃料电池(IT-SOFCs)阴极材料。
文摘NiO-La0.3Ce0.7O2-δ(LDC30) novel anode was investigated for IT-SOFCs(Intermediate Temperature-Solid Oxide Fuel Cells) with LaGaO3-based electrolyte. The results showed that LDC30 has a suitable chemical compatibility with NiO and NiO-LDC30 has a good thermal expansion matching with LDC30 interlayer and LSGM(La0.8Sr0.2Ga0.8Mg0.2O3-δ) electrolyte, so NiO-LDC30/LDC30 was considered as a feasible and novel anode system. It was also shown that NiO content plays a key role on polarization performance and morphology of the anode. When the content of NiO was 60%(mass fraction), the polarization loss of anode was the lowest. Next we will optimize the porosity and sintering procedure to modify the microstructure and performance of the anode.
文摘采用固相反应法合成中温固体氧化物燃料电池的Sm 0.5 Sr 0.5 CoO 3-δ阴极粉末,经机械混合法制备出Sm 0.5 Sr 0.5 CoO 3-δ-Ce 0.8 Sm 0.2 O 1.9复合阴极粉末。研究了不同煅烧温度得到粉末的晶体结构,判断得出Sm 0.5 Sr 0.5 CoO 3-δ阴极粉末的最佳煅烧温度,表征了Sm 0.5 Sr 0.5 CoO 3-δ和Ce 0.8 Sm 0.2 O 1.9之间的化学相容性。通过电化学工作站对Sm 0.5 Sr 0.5 CoO 3-δ和Sm 0.5 Sr 0.5 CoO 3-δ-Ce 0.8 Sm 0.2 O 1.9的电化学性能进行了测试。结果表明:Sm 0.5 Sr 0.5 CoO 3-δ的最佳煅烧温度大约是1400℃,Sm 0.5 Sr 0.5 CoO 3-δ阴极和Ce 0.8 Sm 0.2 O 1.9电解质二者之间呈现出良好的化学相容性。Sm 0.5 Sr 0.5 CoO 3-δ-Ce 0.8 Sm 0.2 O 1.9粉末的中位径(D 50)约是8.034μm。Ce 0.8 Sm 0.2 O 1.9电解质粉末的添加有效地降低了Sm 0.5 Sr 0.5 CoO 3-δ的极化电阻。与Sm 0.5 Sr 0.5 CoO 3-δ相比,Sm 0.5 Sr 0.5 CoO 3-δ-Ce 0.8 Sm 0.2 O 1.9复合阴极的单电池在700℃时具有更高的功率密度。