Realizing the physical reality of ‘tHooft’s self similar and dimensionaly regularized fractal-like spacetime as well as being inspired by a note worthy anecdote involving the great mathematician of Alexandria, Pytha...Realizing the physical reality of ‘tHooft’s self similar and dimensionaly regularized fractal-like spacetime as well as being inspired by a note worthy anecdote involving the great mathematician of Alexandria, Pythagoras and the larger than life man of theoretical physics Einstein, we utilize some deep mathematical connections between equivalence classes of equivalence relations and E-infinity theory quotient space. We started from the basic principles of self similarity which came to prominence in science with the advent of the modern theory of nonlinear dynamical systems, deterministic chaos and fractals. This fundamental logico-mathematical thread related to partially ordered sets is then applied to show how the classical Newton’s kinetic energy E = 1/2mv<sup>2</sup> leads to Einstein’s celebrated maximal energy equation E = mc<sup>2</sup> and how in turn this can be dissected into the ordinary energy density E(O) = mc<sup>2</sup>/22 and the dark energy density E(D) = mc<sup>2</sup>(21/22) of the cosmos where m is the mass;v is the velocity and c is the speed of light. The important role of the exceptional Lie symmetry groups and ‘tHooft-Veltman-Wilson dimensional regularization in fractal spacetime played in the above is also highlighted. The author hopes that the unusual character of the analysis and presentation of the present work may be taken in a positive vein as seriously attempting to propose a different and new way of doing theoretical physics by treating number theory, set theory, group theory, experimental physics as well as conventional theoretical physics on the same footing and letting all these diverse tools lead us to the answer of fundamental questions without fear of being labelled in one way or another.展开更多
文摘Realizing the physical reality of ‘tHooft’s self similar and dimensionaly regularized fractal-like spacetime as well as being inspired by a note worthy anecdote involving the great mathematician of Alexandria, Pythagoras and the larger than life man of theoretical physics Einstein, we utilize some deep mathematical connections between equivalence classes of equivalence relations and E-infinity theory quotient space. We started from the basic principles of self similarity which came to prominence in science with the advent of the modern theory of nonlinear dynamical systems, deterministic chaos and fractals. This fundamental logico-mathematical thread related to partially ordered sets is then applied to show how the classical Newton’s kinetic energy E = 1/2mv<sup>2</sup> leads to Einstein’s celebrated maximal energy equation E = mc<sup>2</sup> and how in turn this can be dissected into the ordinary energy density E(O) = mc<sup>2</sup>/22 and the dark energy density E(D) = mc<sup>2</sup>(21/22) of the cosmos where m is the mass;v is the velocity and c is the speed of light. The important role of the exceptional Lie symmetry groups and ‘tHooft-Veltman-Wilson dimensional regularization in fractal spacetime played in the above is also highlighted. The author hopes that the unusual character of the analysis and presentation of the present work may be taken in a positive vein as seriously attempting to propose a different and new way of doing theoretical physics by treating number theory, set theory, group theory, experimental physics as well as conventional theoretical physics on the same footing and letting all these diverse tools lead us to the answer of fundamental questions without fear of being labelled in one way or another.