The mathematical formulation of sloshing dynamics for a partially liquid filleddewar container driven by the gravity jitter acceleration associated with slew motion isstudied.Explicit mathematical expressions to man...The mathematical formulation of sloshing dynamics for a partially liquid filleddewar container driven by the gravity jitter acceleration associated with slew motion isstudied.Explicit mathematical expressions to manage jitter accelerption associated withslew motion which is acting on the fluid systems in microgravity are derived. Thenumerical computation of sloshing dymamics is based on the non-inertia framecontainer bound coordinate and the solution of time-dependent three-dimensionalformulations of partial differential equations subject to initial and boundary conditions.The numerical computation of fluid viscous stress forces and moment fluctuationsexerted on the dewar container driven by jitter acceleration associated with slew motion is investigated.展开更多
文摘The mathematical formulation of sloshing dynamics for a partially liquid filleddewar container driven by the gravity jitter acceleration associated with slew motion isstudied.Explicit mathematical expressions to manage jitter accelerption associated withslew motion which is acting on the fluid systems in microgravity are derived. Thenumerical computation of sloshing dymamics is based on the non-inertia framecontainer bound coordinate and the solution of time-dependent three-dimensionalformulations of partial differential equations subject to initial and boundary conditions.The numerical computation of fluid viscous stress forces and moment fluctuationsexerted on the dewar container driven by jitter acceleration associated with slew motion is investigated.