The practical application of the lithium anode in lithium metal batteries(LMBs) has been hindered by the uncontrollable growth of lithium dendrite and the high volumetric change during cycling. Herein, the in situ for...The practical application of the lithium anode in lithium metal batteries(LMBs) has been hindered by the uncontrollable growth of lithium dendrite and the high volumetric change during cycling. Herein, the in situ formed three-dimensional(3D) lithium-boron(Li-B) alloy is suggested as an excellent alternative to the Li metal, in which the 3D Li B skeleton can mitigate the growth of Li dendrites and volumetric change. In this study, the Li-B alloy anodes with different B contents were manufactured by high-temperature melting. It was found that the boron content had a significant effect on the electrochemical performance of the Li-B alloy. The Li-B alloy with the least B content(10 wt%, 10LiB) demonstrated the lowest overpotential of 0.0852 V after 300 h and the lowest interface resistance. However, the full cell with 15LiB as the anode displayed the best cycling performance of 115 m Ah·g^(-1) after 100 cycles with a columbic efficiency greater than 97%. The obtained results suggest that the in situ formed three-dimensional Li-B alloy anode can be an excellent alternative to the Li anode via tuning B contents for next-generation high energy density LMBs.展开更多
In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost ef...In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost efficiency,a quantity of research has been conducted on the commercial application of LIBs.However,it is difficult to achieve satisfying safety and cycling performance simultaneously.There may be thermal runaway(TR),external impact,overcharge and overdischarge in the process of battery abuse,which makes the safety problem of LIBs more prominent.In this review,we summarize recent progress in the smart safety materials design towards the goal of preventing TR of LIBs reversibly from different abuse conditions.Benefiting from smart responsive materials and novel structural design,the safety of LIBs can be improved a lot.We expect to provide a comprehensive reference for the development of smart and safe lithium-based battery materials.展开更多
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t...Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. U1904216 and51771236)the Science Fund for Distinguished Young Scholars of Hunan Province (No. 2018JJ1038)+1 种基金the Innovation-Driven Project of Central South University (No. 2020CX007)the State Key Laboratory of Powder Metallurgy, Central South University。
文摘The practical application of the lithium anode in lithium metal batteries(LMBs) has been hindered by the uncontrollable growth of lithium dendrite and the high volumetric change during cycling. Herein, the in situ formed three-dimensional(3D) lithium-boron(Li-B) alloy is suggested as an excellent alternative to the Li metal, in which the 3D Li B skeleton can mitigate the growth of Li dendrites and volumetric change. In this study, the Li-B alloy anodes with different B contents were manufactured by high-temperature melting. It was found that the boron content had a significant effect on the electrochemical performance of the Li-B alloy. The Li-B alloy with the least B content(10 wt%, 10LiB) demonstrated the lowest overpotential of 0.0852 V after 300 h and the lowest interface resistance. However, the full cell with 15LiB as the anode displayed the best cycling performance of 115 m Ah·g^(-1) after 100 cycles with a columbic efficiency greater than 97%. The obtained results suggest that the in situ formed three-dimensional Li-B alloy anode can be an excellent alternative to the Li anode via tuning B contents for next-generation high energy density LMBs.
基金support by,National Key Research and Development Program(2023YFB2503700 and 2023YFC3008804)the Beijing Municipal Science&Technology Commission No.Z231100006123003+1 种基金the National Science Foundation of China(22071133)the Beijing Natural Science Foundation(No.Z220020).
文摘In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost efficiency,a quantity of research has been conducted on the commercial application of LIBs.However,it is difficult to achieve satisfying safety and cycling performance simultaneously.There may be thermal runaway(TR),external impact,overcharge and overdischarge in the process of battery abuse,which makes the safety problem of LIBs more prominent.In this review,we summarize recent progress in the smart safety materials design towards the goal of preventing TR of LIBs reversibly from different abuse conditions.Benefiting from smart responsive materials and novel structural design,the safety of LIBs can be improved a lot.We expect to provide a comprehensive reference for the development of smart and safe lithium-based battery materials.
文摘Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.