基于基片集成波导(SIW)结构,提出了一种具有高端口隔离度的双极化缝隙天线。天线正面蚀刻一个直径约为λ0/2的环型缝隙作为辐射源,工作于圆形SIW谐振腔的主模TM11;背面中心位置蚀刻微带交指电容,使SIW腔体电尺寸减小了约7%;采用一对正...基于基片集成波导(SIW)结构,提出了一种具有高端口隔离度的双极化缝隙天线。天线正面蚀刻一个直径约为λ0/2的环型缝隙作为辐射源,工作于圆形SIW谐振腔的主模TM11;背面中心位置蚀刻微带交指电容,使SIW腔体电尺寸减小了约7%;采用一对正交微带线分别由两个端口为天线馈电。所设计的天线谐振在5.8 GHz频段,–10 d B阻抗带宽为1.7%,最大增益为8.5 d Bi,端口隔离度高于35 d B。测试结果表明,该双极化天线具有高隔离度、高增益的特点,可用于MIMO等无线通信系统中。展开更多
The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were perform...The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity.展开更多
文摘基于基片集成波导(SIW)结构,提出了一种具有高端口隔离度的双极化缝隙天线。天线正面蚀刻一个直径约为λ0/2的环型缝隙作为辐射源,工作于圆形SIW谐振腔的主模TM11;背面中心位置蚀刻微带交指电容,使SIW腔体电尺寸减小了约7%;采用一对正交微带线分别由两个端口为天线馈电。所设计的天线谐振在5.8 GHz频段,–10 d B阻抗带宽为1.7%,最大增益为8.5 d Bi,端口隔离度高于35 d B。测试结果表明,该双极化天线具有高隔离度、高增益的特点,可用于MIMO等无线通信系统中。
文摘The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity.